基于主成分分析的脑机接口频谱识别

A. Yehia, S. Eldawlatly, M. Taher
{"title":"基于主成分分析的脑机接口频谱识别","authors":"A. Yehia, S. Eldawlatly, M. Taher","doi":"10.1109/ICCES.2015.7393085","DOIUrl":null,"url":null,"abstract":"Utilizing brain activity to interact with the external environment is no longer impossible thanks to recent advances in developing Brain-Computer Interfaces (BCIs). This paper proposes a novel recognition method for Steady-State Visual Evoked Potentials (SSVEPs) from electroencephalography (EEG). In this approach, EEG signals are pre-processed using spectral and time domain filters in order to enhance Signal-to-Noise Ratio (SNR). Features are then extracted from the spectral representation after obtaining the spectral principle components. SSVEP target frequency that corresponds to the frequency of a flickering object is determined using a linear classification process. We examined the performance of the proposed approach using two datasets. Results demonstrate a high detection accuracy of an average 96.12% for a 4-second time window and 92.85% for a 2-second time window. Our analysis demonstrates that the proposed approach achieves better detection accuracy compared to traditional methods including canonical correlation analysis and its variants.","PeriodicalId":227813,"journal":{"name":"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)","volume":"540 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Principal component analysis-based spectral recognition for SSVEP-based Brain-Computer Interfaces\",\"authors\":\"A. Yehia, S. Eldawlatly, M. Taher\",\"doi\":\"10.1109/ICCES.2015.7393085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utilizing brain activity to interact with the external environment is no longer impossible thanks to recent advances in developing Brain-Computer Interfaces (BCIs). This paper proposes a novel recognition method for Steady-State Visual Evoked Potentials (SSVEPs) from electroencephalography (EEG). In this approach, EEG signals are pre-processed using spectral and time domain filters in order to enhance Signal-to-Noise Ratio (SNR). Features are then extracted from the spectral representation after obtaining the spectral principle components. SSVEP target frequency that corresponds to the frequency of a flickering object is determined using a linear classification process. We examined the performance of the proposed approach using two datasets. Results demonstrate a high detection accuracy of an average 96.12% for a 4-second time window and 92.85% for a 2-second time window. Our analysis demonstrates that the proposed approach achieves better detection accuracy compared to traditional methods including canonical correlation analysis and its variants.\",\"PeriodicalId\":227813,\"journal\":{\"name\":\"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)\",\"volume\":\"540 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES.2015.7393085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2015.7393085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

由于最近脑机接口(bci)的发展,利用大脑活动与外部环境进行交互不再是不可能的。提出了一种新的脑电图稳态视觉诱发电位(SSVEPs)识别方法。该方法对脑电信号进行频谱滤波和时域滤波预处理,以提高信号的信噪比。在得到光谱主成分后,从光谱表示中提取特征。SSVEP目标频率对应于闪烁物体的频率,使用线性分类过程确定。我们使用两个数据集检验了所提出方法的性能。结果表明,该方法在4秒时间窗内的平均检测准确率为96.12%,在2秒时间窗内的平均检测准确率为92.85%。分析表明,与典型相关分析及其变体等传统方法相比,该方法具有更好的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principal component analysis-based spectral recognition for SSVEP-based Brain-Computer Interfaces
Utilizing brain activity to interact with the external environment is no longer impossible thanks to recent advances in developing Brain-Computer Interfaces (BCIs). This paper proposes a novel recognition method for Steady-State Visual Evoked Potentials (SSVEPs) from electroencephalography (EEG). In this approach, EEG signals are pre-processed using spectral and time domain filters in order to enhance Signal-to-Noise Ratio (SNR). Features are then extracted from the spectral representation after obtaining the spectral principle components. SSVEP target frequency that corresponds to the frequency of a flickering object is determined using a linear classification process. We examined the performance of the proposed approach using two datasets. Results demonstrate a high detection accuracy of an average 96.12% for a 4-second time window and 92.85% for a 2-second time window. Our analysis demonstrates that the proposed approach achieves better detection accuracy compared to traditional methods including canonical correlation analysis and its variants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信