智能汽车队列的混合椭球学习与模糊控制

Julie A. Dickerson, Hyun Mun Kim, B. Kosko
{"title":"智能汽车队列的混合椭球学习与模糊控制","authors":"Julie A. Dickerson, Hyun Mun Kim, B. Kosko","doi":"10.1109/IFIS.1993.324213","DOIUrl":null,"url":null,"abstract":"A fuzzy system controls gaps between cars in single lane platoons. Fuzzy controllers create, maintain, and divide platoons on the highway. Each car's controller uses only data from sensors on the car. Tightly coupled platoons avoid the \"slinky effect\" by dropping back during platoon maneuvers. When the lead car reaches its goal, the follower cars return to the proper platoon spacing. Differences in car and engine types require changes in fuzzy rules and sets. A hybrid neural-fuzzy system combines supervised and unsupervised learning to find and tune the fuzzy-rules. Unsupervised competitive learning chooses the first set of ellipsoidal fuzzy rules. Supervised learning tunes the fuzzy rules with gradient descent. The authors tested the fuzzy gap controller with a realistic car model.<<ETX>>","PeriodicalId":408138,"journal":{"name":"Third International Conference on Industrial Fuzzy Control and Intelligent Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid ellipsoidal learning and fuzzy control for platoons of smart cars\",\"authors\":\"Julie A. Dickerson, Hyun Mun Kim, B. Kosko\",\"doi\":\"10.1109/IFIS.1993.324213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fuzzy system controls gaps between cars in single lane platoons. Fuzzy controllers create, maintain, and divide platoons on the highway. Each car's controller uses only data from sensors on the car. Tightly coupled platoons avoid the \\\"slinky effect\\\" by dropping back during platoon maneuvers. When the lead car reaches its goal, the follower cars return to the proper platoon spacing. Differences in car and engine types require changes in fuzzy rules and sets. A hybrid neural-fuzzy system combines supervised and unsupervised learning to find and tune the fuzzy-rules. Unsupervised competitive learning chooses the first set of ellipsoidal fuzzy rules. Supervised learning tunes the fuzzy rules with gradient descent. The authors tested the fuzzy gap controller with a realistic car model.<<ETX>>\",\"PeriodicalId\":408138,\"journal\":{\"name\":\"Third International Conference on Industrial Fuzzy Control and Intelligent Systems\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Industrial Fuzzy Control and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFIS.1993.324213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Industrial Fuzzy Control and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFIS.1993.324213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一个模糊系统控制单车道排中车辆之间的间隔。模糊控制器在高速公路上创建、维护和划分排。每辆车的控制器只使用车上传感器的数据。紧密耦合的排通过在排演习中后退来避免“滑脱效应”。当领头车到达目标时,跟随车返回到合适的排距。汽车和发动机类型的差异需要改变模糊规则和设置。神经-模糊混合系统结合监督学习和无监督学习来发现和调整模糊规则。无监督竞争学习选择第一组椭球模糊规则。监督学习用梯度下降对模糊规则进行调整。作者用一个真实的汽车模型对模糊间隙控制器进行了测试
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid ellipsoidal learning and fuzzy control for platoons of smart cars
A fuzzy system controls gaps between cars in single lane platoons. Fuzzy controllers create, maintain, and divide platoons on the highway. Each car's controller uses only data from sensors on the car. Tightly coupled platoons avoid the "slinky effect" by dropping back during platoon maneuvers. When the lead car reaches its goal, the follower cars return to the proper platoon spacing. Differences in car and engine types require changes in fuzzy rules and sets. A hybrid neural-fuzzy system combines supervised and unsupervised learning to find and tune the fuzzy-rules. Unsupervised competitive learning chooses the first set of ellipsoidal fuzzy rules. Supervised learning tunes the fuzzy rules with gradient descent. The authors tested the fuzzy gap controller with a realistic car model.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信