基于离散模糊数的多粒度语言决策语言代表模型

Mei Cai, Zaiwu Gong
{"title":"基于离散模糊数的多粒度语言决策语言代表模型","authors":"Mei Cai, Zaiwu Gong","doi":"10.1109/GSIS.2017.8077666","DOIUrl":null,"url":null,"abstract":"Many decision-making problems use vague and imprecise information in linguistic variable formats as preferences. In this paper, we present a linguistic representative model based on discrete fuzzy numbers whose support is a subset of consecutive natural numbers. The arbitrary linguistic term is defined to give decision makers more freedom to express their preferences. The discrete fuzzy weighted normal operators defined on a finite chain in accordance with the granularity of linguistic term set are used to complete the aggregation process.","PeriodicalId":425920,"journal":{"name":"2017 International Conference on Grey Systems and Intelligent Services (GSIS)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel linguistic representative model based on discrete fuzzy numbers for multi-granularity linguistic decision-making\",\"authors\":\"Mei Cai, Zaiwu Gong\",\"doi\":\"10.1109/GSIS.2017.8077666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many decision-making problems use vague and imprecise information in linguistic variable formats as preferences. In this paper, we present a linguistic representative model based on discrete fuzzy numbers whose support is a subset of consecutive natural numbers. The arbitrary linguistic term is defined to give decision makers more freedom to express their preferences. The discrete fuzzy weighted normal operators defined on a finite chain in accordance with the granularity of linguistic term set are used to complete the aggregation process.\",\"PeriodicalId\":425920,\"journal\":{\"name\":\"2017 International Conference on Grey Systems and Intelligent Services (GSIS)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Grey Systems and Intelligent Services (GSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSIS.2017.8077666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Grey Systems and Intelligent Services (GSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSIS.2017.8077666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多决策问题使用语言可变格式的模糊和不精确信息作为偏好。本文提出了一种基于离散模糊数的语言表征模型,该模型的支持是连续自然数的子集。定义任意的语言术语是为了给决策者更多的自由来表达他们的偏好。根据语言项集的粒度定义在有限链上的离散模糊加权正规算子来完成聚合过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel linguistic representative model based on discrete fuzzy numbers for multi-granularity linguistic decision-making
Many decision-making problems use vague and imprecise information in linguistic variable formats as preferences. In this paper, we present a linguistic representative model based on discrete fuzzy numbers whose support is a subset of consecutive natural numbers. The arbitrary linguistic term is defined to give decision makers more freedom to express their preferences. The discrete fuzzy weighted normal operators defined on a finite chain in accordance with the granularity of linguistic term set are used to complete the aggregation process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信