基于图注意网络的脉冲多普勒雷达目标检测方法

Yang Yang, Yang Zhao, Haibo Wang, Dong Cao, Linyan Liu
{"title":"基于图注意网络的脉冲多普勒雷达目标检测方法","authors":"Yang Yang, Yang Zhao, Haibo Wang, Dong Cao, Linyan Liu","doi":"10.1109/icet55676.2022.9824889","DOIUrl":null,"url":null,"abstract":"Target detection under strong clutter is a relevant issue in many civilian and military application scenarios. Structured data based Deep Neural Networks (DNNs), such as Convolutional Neural Networks (CNNs), can automate feature extraction of radar time series and achieve better detection performance. We present in this work a target detection method to exploit spatial-temporal joint information of signal samples between Pulse Doppler (PD) radar range cells. The key point of proposed solution relies on the transformation of traditional signal time-series to graph-structured data, and application of Graph Attention Networks (GAT) to classify graph-structured data nodes. The presented results, achieved by processing PD radar data, demonstrate the validity of proposed method.","PeriodicalId":166358,"journal":{"name":"2022 IEEE 5th International Conference on Electronics Technology (ICET)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Target Detection Method of Pulse-Doppler Radar Based on Graph Attention Networks\",\"authors\":\"Yang Yang, Yang Zhao, Haibo Wang, Dong Cao, Linyan Liu\",\"doi\":\"10.1109/icet55676.2022.9824889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target detection under strong clutter is a relevant issue in many civilian and military application scenarios. Structured data based Deep Neural Networks (DNNs), such as Convolutional Neural Networks (CNNs), can automate feature extraction of radar time series and achieve better detection performance. We present in this work a target detection method to exploit spatial-temporal joint information of signal samples between Pulse Doppler (PD) radar range cells. The key point of proposed solution relies on the transformation of traditional signal time-series to graph-structured data, and application of Graph Attention Networks (GAT) to classify graph-structured data nodes. The presented results, achieved by processing PD radar data, demonstrate the validity of proposed method.\",\"PeriodicalId\":166358,\"journal\":{\"name\":\"2022 IEEE 5th International Conference on Electronics Technology (ICET)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 5th International Conference on Electronics Technology (ICET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icet55676.2022.9824889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronics Technology (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icet55676.2022.9824889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

强杂波条件下的目标检测是许多民用和军事应用场景中的相关问题。基于结构化数据的深度神经网络(dnn),如卷积神经网络(cnn),可以自动提取雷达时间序列的特征,并获得更好的检测性能。本文提出了一种利用脉冲多普勒(PD)雷达距离单元间信号样本的时空联合信息的目标检测方法。该方案的关键在于将传统的信号时间序列转换为图结构数据,并应用图注意网络(GAT)对图结构数据节点进行分类。通过对PD雷达数据的处理,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Target Detection Method of Pulse-Doppler Radar Based on Graph Attention Networks
Target detection under strong clutter is a relevant issue in many civilian and military application scenarios. Structured data based Deep Neural Networks (DNNs), such as Convolutional Neural Networks (CNNs), can automate feature extraction of radar time series and achieve better detection performance. We present in this work a target detection method to exploit spatial-temporal joint information of signal samples between Pulse Doppler (PD) radar range cells. The key point of proposed solution relies on the transformation of traditional signal time-series to graph-structured data, and application of Graph Attention Networks (GAT) to classify graph-structured data nodes. The presented results, achieved by processing PD radar data, demonstrate the validity of proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信