命题Gödel逻辑和Delannoy路径

P. Codara, O. D'Antona, V. Marra
{"title":"命题Gödel逻辑和Delannoy路径","authors":"P. Codara, O. D'Antona, V. Marra","doi":"10.1109/FUZZY.2007.4295542","DOIUrl":null,"url":null,"abstract":"Godel propositional logic is the logic of the minimum triangular norm, and can be axiomatized as propositional intuitionistic logic augmented by the prelinearity axiom (alpha rarr beta) V (beta rarr alpha). Its algebraic counterpart is the subvariety of Heyting algebras satisfying prelinearity, known as Godel algebras. A Delannoy path is a lattice path in Z2 that only uses northward, eastward, and northeastward steps. We establish a representation theorem for free n-generated Godel algebras in terms of the Boolean n-cube {0,1}n, enriched by suitably generalized Delannoy paths.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Propositional Gödel Logic and Delannoy Paths\",\"authors\":\"P. Codara, O. D'Antona, V. Marra\",\"doi\":\"10.1109/FUZZY.2007.4295542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Godel propositional logic is the logic of the minimum triangular norm, and can be axiomatized as propositional intuitionistic logic augmented by the prelinearity axiom (alpha rarr beta) V (beta rarr alpha). Its algebraic counterpart is the subvariety of Heyting algebras satisfying prelinearity, known as Godel algebras. A Delannoy path is a lattice path in Z2 that only uses northward, eastward, and northeastward steps. We establish a representation theorem for free n-generated Godel algebras in terms of the Boolean n-cube {0,1}n, enriched by suitably generalized Delannoy paths.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

哥德尔命题逻辑是最小三角范数的逻辑,可以公理化为由预线性公理(α rarr β) V (β rarr α)扩充的命题直觉逻辑。它的代数对应物是满足预线性的Heyting代数的子变种,称为哥德尔代数。Delannoy路径是Z2中的格子路径,只使用向北、向东和东北的台阶。我们建立了一个用布尔n立方{0,1}n表示的自由n生成哥德尔代数的表示定理,该定理由适当的广义Delannoy路径充实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Propositional Gödel Logic and Delannoy Paths
Godel propositional logic is the logic of the minimum triangular norm, and can be axiomatized as propositional intuitionistic logic augmented by the prelinearity axiom (alpha rarr beta) V (beta rarr alpha). Its algebraic counterpart is the subvariety of Heyting algebras satisfying prelinearity, known as Godel algebras. A Delannoy path is a lattice path in Z2 that only uses northward, eastward, and northeastward steps. We establish a representation theorem for free n-generated Godel algebras in terms of the Boolean n-cube {0,1}n, enriched by suitably generalized Delannoy paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信