多导联心电图信号的室性早搏自动检测

Mohamad Mahmoud Al Rahhal, N. A. Ajlan, Y. Bazi, H. Alhichri, T. Rabczuk
{"title":"多导联心电图信号的室性早搏自动检测","authors":"Mohamad Mahmoud Al Rahhal, N. A. Ajlan, Y. Bazi, H. Alhichri, T. Rabczuk","doi":"10.1109/EIT.2018.8500197","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an electrocardiogram (ECG) technique for the automatic detection of Premature Ventricular Contractions (PVC) based on multi-lead signals and on a deep learning architecture which is built using Stacked Denoising Autoencoders (SDAEs) networks. The proposed method consists of two main stages; feature learning and classification. In the first stage, we learn a new feature representation from data using SDAEs. Regarding the classification, we add a softmax regression layer on the top of the resulting hidden representation layer yielding a deep neural network (DNN). The proposed method fuses the results of several ECG leads (up to 12) in order to increase the detection accuracy. In the experiments, we use INCART database to test the proposed DNN multi-lead method. The obtained results are 98.6%, 91.4%, and 97.7% respectively for overall accuracy (OA), average sensitivity (Se), and average positive productivity (Pp).","PeriodicalId":188414,"journal":{"name":"2018 IEEE International Conference on Electro/Information Technology (EIT)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Automatic Premature Ventricular Contractions Detection for Multi-Lead Electrocardiogram Signal\",\"authors\":\"Mohamad Mahmoud Al Rahhal, N. A. Ajlan, Y. Bazi, H. Alhichri, T. Rabczuk\",\"doi\":\"10.1109/EIT.2018.8500197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an electrocardiogram (ECG) technique for the automatic detection of Premature Ventricular Contractions (PVC) based on multi-lead signals and on a deep learning architecture which is built using Stacked Denoising Autoencoders (SDAEs) networks. The proposed method consists of two main stages; feature learning and classification. In the first stage, we learn a new feature representation from data using SDAEs. Regarding the classification, we add a softmax regression layer on the top of the resulting hidden representation layer yielding a deep neural network (DNN). The proposed method fuses the results of several ECG leads (up to 12) in order to increase the detection accuracy. In the experiments, we use INCART database to test the proposed DNN multi-lead method. The obtained results are 98.6%, 91.4%, and 97.7% respectively for overall accuracy (OA), average sensitivity (Se), and average positive productivity (Pp).\",\"PeriodicalId\":188414,\"journal\":{\"name\":\"2018 IEEE International Conference on Electro/Information Technology (EIT)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Electro/Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2018.8500197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2018.8500197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们提出了一种基于多导联信号和使用堆叠降噪自动编码器(SDAEs)网络构建的深度学习架构的心电图(ECG)技术,用于自动检测室性早衰(PVC)。该方法主要分为两个阶段;特征学习和分类。在第一阶段,我们使用SDAEs从数据中学习新的特征表示。关于分类,我们在得到的隐藏表示层的顶部添加了一个softmax回归层,从而产生一个深度神经网络(DNN)。该方法将多导联(最多12条)的检测结果进行融合,以提高检测精度。在实验中,我们使用INCART数据库对所提出的深度神经网络多导联方法进行了测试。总体准确度(OA)、平均灵敏度(Se)和平均阳性生产率(Pp)分别为98.6%、91.4%和97.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Premature Ventricular Contractions Detection for Multi-Lead Electrocardiogram Signal
In this paper, we propose an electrocardiogram (ECG) technique for the automatic detection of Premature Ventricular Contractions (PVC) based on multi-lead signals and on a deep learning architecture which is built using Stacked Denoising Autoencoders (SDAEs) networks. The proposed method consists of two main stages; feature learning and classification. In the first stage, we learn a new feature representation from data using SDAEs. Regarding the classification, we add a softmax regression layer on the top of the resulting hidden representation layer yielding a deep neural network (DNN). The proposed method fuses the results of several ECG leads (up to 12) in order to increase the detection accuracy. In the experiments, we use INCART database to test the proposed DNN multi-lead method. The obtained results are 98.6%, 91.4%, and 97.7% respectively for overall accuracy (OA), average sensitivity (Se), and average positive productivity (Pp).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信