自动声乐片段检测在流行音乐

Liming Song, Ming Li, Yonghong Yan
{"title":"自动声乐片段检测在流行音乐","authors":"Liming Song, Ming Li, Yonghong Yan","doi":"10.1109/CIS.2013.80","DOIUrl":null,"url":null,"abstract":"We propose a technique for the automatic vocal segments detection in an acoustical polyphonic music signal. We use a combination of several characteristics specific to singing voice as the feature and employ a Gaussian Mixture Model (GMM) classifier for vocal and non-vocal classification. We have employed a pre-processing of spectral whitening and archived a performance of 81.3% over the RWC popular music dataset.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automatic Vocal Segments Detection in Popular Music\",\"authors\":\"Liming Song, Ming Li, Yonghong Yan\",\"doi\":\"10.1109/CIS.2013.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a technique for the automatic vocal segments detection in an acoustical polyphonic music signal. We use a combination of several characteristics specific to singing voice as the feature and employ a Gaussian Mixture Model (GMM) classifier for vocal and non-vocal classification. We have employed a pre-processing of spectral whitening and archived a performance of 81.3% over the RWC popular music dataset.\",\"PeriodicalId\":294223,\"journal\":{\"name\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2013.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种声学复调音乐信号中人声片段的自动检测技术。我们使用歌唱声音特定的几个特征的组合作为特征,并使用高斯混合模型(GMM)分类器进行声乐和非声乐分类。我们采用了光谱白化预处理,并在RWC流行音乐数据集上存档了81.3%的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Vocal Segments Detection in Popular Music
We propose a technique for the automatic vocal segments detection in an acoustical polyphonic music signal. We use a combination of several characteristics specific to singing voice as the feature and employ a Gaussian Mixture Model (GMM) classifier for vocal and non-vocal classification. We have employed a pre-processing of spectral whitening and archived a performance of 81.3% over the RWC popular music dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信