{"title":"含水率对蒸压加气混凝土力学性能的影响","authors":"C. Deng, W. Cai, J. Yin, Fenghao Yang, Linchen Li","doi":"10.11648/J.IJTET.20190504.16","DOIUrl":null,"url":null,"abstract":"Autoclaved aerated concrete (AAC) is a new type of green building material rapidly developed nowadays. Moisture content plays a significant effect on its mechanical properties. In this study, a series of uniaxial compression tests were conducted to evaluate the effect of moisture content on the mechanical behaviors. During the tests, full stress-strain curves were obtained. The influence of water content on AAC stress-strain full curve shape, elastic modulus, peak stress, peak strain and ultimate strain was analyzed. The fitting equations of water content with peak stress, peak strain and elastic modulus were established. The results show that the brittleness of AAC decreased with the increased of water content, and the failure mode gradually transited from brittle to ductile failure. When the water content increased from 0% to 10%, obvious difference in the stress-strain curves can be observed. The peak stress decreased by 20.00% and 11.63% when the moisture content was 5% and 10%, respectively. However, when the water content increased from 10% to 40%, the peak stress decreased slowly. The rising section relation model of AAC stress-strain full curve can be fitted by cubic polynomial, which provided reference basis for finite element analysis.","PeriodicalId":265375,"journal":{"name":"International Journal of Transportation Engineering and Technology","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of Moisture Content on Mechanical Properties of Autoclaved Aerated Concrete\",\"authors\":\"C. Deng, W. Cai, J. Yin, Fenghao Yang, Linchen Li\",\"doi\":\"10.11648/J.IJTET.20190504.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autoclaved aerated concrete (AAC) is a new type of green building material rapidly developed nowadays. Moisture content plays a significant effect on its mechanical properties. In this study, a series of uniaxial compression tests were conducted to evaluate the effect of moisture content on the mechanical behaviors. During the tests, full stress-strain curves were obtained. The influence of water content on AAC stress-strain full curve shape, elastic modulus, peak stress, peak strain and ultimate strain was analyzed. The fitting equations of water content with peak stress, peak strain and elastic modulus were established. The results show that the brittleness of AAC decreased with the increased of water content, and the failure mode gradually transited from brittle to ductile failure. When the water content increased from 0% to 10%, obvious difference in the stress-strain curves can be observed. The peak stress decreased by 20.00% and 11.63% when the moisture content was 5% and 10%, respectively. However, when the water content increased from 10% to 40%, the peak stress decreased slowly. The rising section relation model of AAC stress-strain full curve can be fitted by cubic polynomial, which provided reference basis for finite element analysis.\",\"PeriodicalId\":265375,\"journal\":{\"name\":\"International Journal of Transportation Engineering and Technology\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Transportation Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJTET.20190504.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJTET.20190504.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Moisture Content on Mechanical Properties of Autoclaved Aerated Concrete
Autoclaved aerated concrete (AAC) is a new type of green building material rapidly developed nowadays. Moisture content plays a significant effect on its mechanical properties. In this study, a series of uniaxial compression tests were conducted to evaluate the effect of moisture content on the mechanical behaviors. During the tests, full stress-strain curves were obtained. The influence of water content on AAC stress-strain full curve shape, elastic modulus, peak stress, peak strain and ultimate strain was analyzed. The fitting equations of water content with peak stress, peak strain and elastic modulus were established. The results show that the brittleness of AAC decreased with the increased of water content, and the failure mode gradually transited from brittle to ductile failure. When the water content increased from 0% to 10%, obvious difference in the stress-strain curves can be observed. The peak stress decreased by 20.00% and 11.63% when the moisture content was 5% and 10%, respectively. However, when the water content increased from 10% to 40%, the peak stress decreased slowly. The rising section relation model of AAC stress-strain full curve can be fitted by cubic polynomial, which provided reference basis for finite element analysis.