{"title":"参数化自稳定嵌入式系统的状态空间抽象","authors":"N. Liveris, H. Zhou, R. Dick, P. Banerjee","doi":"10.1145/1450058.1450061","DOIUrl":null,"url":null,"abstract":"Self-stabilizing systems are systems that automatically recover from any transient fault. Proving the correctness of a parameterized self-stabilizing system, i.e., a system composed of an arbitrary number of processes, is a challenging task. For the verification of parameterized systems the method of control abstraction has been developed. However, control abstraction can only be applied to systems in which each process has a fixed number of observable variables. In this article, we propose a technique to abstract a parameterized self-stabilizing system, whose processes have a parameterized number of observable variables, to a system with fixed number of observable variables. This enables the use of control abstraction for verification. The proposed technique targets low-atomicity, shared-memory, asynchronous systems. We establish the completeness of the method under reasonable conditions and demonstrate its effectiveness by applying it on a number of self-stabilizing distributed systems.","PeriodicalId":143573,"journal":{"name":"International Conference on Embedded Software","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"State space abstraction for parameterized self-stabilizing embedded systems\",\"authors\":\"N. Liveris, H. Zhou, R. Dick, P. Banerjee\",\"doi\":\"10.1145/1450058.1450061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-stabilizing systems are systems that automatically recover from any transient fault. Proving the correctness of a parameterized self-stabilizing system, i.e., a system composed of an arbitrary number of processes, is a challenging task. For the verification of parameterized systems the method of control abstraction has been developed. However, control abstraction can only be applied to systems in which each process has a fixed number of observable variables. In this article, we propose a technique to abstract a parameterized self-stabilizing system, whose processes have a parameterized number of observable variables, to a system with fixed number of observable variables. This enables the use of control abstraction for verification. The proposed technique targets low-atomicity, shared-memory, asynchronous systems. We establish the completeness of the method under reasonable conditions and demonstrate its effectiveness by applying it on a number of self-stabilizing distributed systems.\",\"PeriodicalId\":143573,\"journal\":{\"name\":\"International Conference on Embedded Software\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Embedded Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1450058.1450061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Embedded Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1450058.1450061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
State space abstraction for parameterized self-stabilizing embedded systems
Self-stabilizing systems are systems that automatically recover from any transient fault. Proving the correctness of a parameterized self-stabilizing system, i.e., a system composed of an arbitrary number of processes, is a challenging task. For the verification of parameterized systems the method of control abstraction has been developed. However, control abstraction can only be applied to systems in which each process has a fixed number of observable variables. In this article, we propose a technique to abstract a parameterized self-stabilizing system, whose processes have a parameterized number of observable variables, to a system with fixed number of observable variables. This enables the use of control abstraction for verification. The proposed technique targets low-atomicity, shared-memory, asynchronous systems. We establish the completeness of the method under reasonable conditions and demonstrate its effectiveness by applying it on a number of self-stabilizing distributed systems.