LSTM中局部注意对抽象文本摘要的影响

Puruso Muhammad Hanunggul, S. Suyanto
{"title":"LSTM中局部注意对抽象文本摘要的影响","authors":"Puruso Muhammad Hanunggul, S. Suyanto","doi":"10.1109/ISRITI48646.2019.9034616","DOIUrl":null,"url":null,"abstract":"An attentional mechanism is very important to enhance a neural machine translation (NMT). There are two classes of attentions: global and local attentions. This paper focuses on comparing the impact of the local attention in Long Short-Term Memory (LSTM) model to generate an abstractive text summarization (ATS). Developing a model using a dataset of Amazon Fine Food Reviews and evaluating it using dataset of GloVe shows that the global attention-based model produces better ROUGE-1, where it generates more words contained in the actual summary. But, the local attention-based gives higher ROUGE-2, where it generates more pairs of words contained in the actual summary, since the mechanism of local attention considers the subset of input words instead of the whole input words.","PeriodicalId":367363,"journal":{"name":"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"The Impact of Local Attention in LSTM for Abstractive Text Summarization\",\"authors\":\"Puruso Muhammad Hanunggul, S. Suyanto\",\"doi\":\"10.1109/ISRITI48646.2019.9034616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An attentional mechanism is very important to enhance a neural machine translation (NMT). There are two classes of attentions: global and local attentions. This paper focuses on comparing the impact of the local attention in Long Short-Term Memory (LSTM) model to generate an abstractive text summarization (ATS). Developing a model using a dataset of Amazon Fine Food Reviews and evaluating it using dataset of GloVe shows that the global attention-based model produces better ROUGE-1, where it generates more words contained in the actual summary. But, the local attention-based gives higher ROUGE-2, where it generates more pairs of words contained in the actual summary, since the mechanism of local attention considers the subset of input words instead of the whole input words.\",\"PeriodicalId\":367363,\"journal\":{\"name\":\"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISRITI48646.2019.9034616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI48646.2019.9034616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

注意机制是提高神经机器翻译能力的关键。关注有两类:全局关注和局部关注。本文比较了局部注意对长短期记忆(LSTM)模型生成抽象文本摘要(ATS)的影响。使用Amazon Fine Food Reviews的数据集开发一个模型,并使用GloVe的数据集对其进行评估,结果表明,基于全局注意力的模型产生了更好的ROUGE-1,它生成了更多包含在实际摘要中的单词。但是,基于局部注意的方法给出了更高的ROUGE-2,它生成了更多包含在实际摘要中的词对,因为局部注意的机制考虑的是输入词的子集而不是整个输入词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Impact of Local Attention in LSTM for Abstractive Text Summarization
An attentional mechanism is very important to enhance a neural machine translation (NMT). There are two classes of attentions: global and local attentions. This paper focuses on comparing the impact of the local attention in Long Short-Term Memory (LSTM) model to generate an abstractive text summarization (ATS). Developing a model using a dataset of Amazon Fine Food Reviews and evaluating it using dataset of GloVe shows that the global attention-based model produces better ROUGE-1, where it generates more words contained in the actual summary. But, the local attention-based gives higher ROUGE-2, where it generates more pairs of words contained in the actual summary, since the mechanism of local attention considers the subset of input words instead of the whole input words.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信