将领域知识集成到深度学习中

R. Salakhutdinov
{"title":"将领域知识集成到深度学习中","authors":"R. Salakhutdinov","doi":"10.1145/3292500.3340416","DOIUrl":null,"url":null,"abstract":"In this talk, I will first discuss deep learning models that can find semantically meaningful representations of words, learn to read documents and answer questions about their content. I will show how we can encode external linguistic knowledge as an explicit memory in recurrent neural networks, and use it to model co-reference relations in text. I will further introduce methods that can augment neural representation of text with structured data from Knowledge Bases for question answering, and show how we can use structured prior knowledge from Knowledge Graphs for image classification. Finally, I will introduce the notion of structured memory as being a crucial part of an intelligent agent's ability to plan and reason in partially observable environments. I will present a modular hierarchical reinforcement learning agent that can learn to store arbitrary information about the environment over long time lags, perform efficient exploration and long-term planning, while generalizing across domains and tasks.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Integrating Domain-Knowledge into Deep Learning\",\"authors\":\"R. Salakhutdinov\",\"doi\":\"10.1145/3292500.3340416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk, I will first discuss deep learning models that can find semantically meaningful representations of words, learn to read documents and answer questions about their content. I will show how we can encode external linguistic knowledge as an explicit memory in recurrent neural networks, and use it to model co-reference relations in text. I will further introduce methods that can augment neural representation of text with structured data from Knowledge Bases for question answering, and show how we can use structured prior knowledge from Knowledge Graphs for image classification. Finally, I will introduce the notion of structured memory as being a crucial part of an intelligent agent's ability to plan and reason in partially observable environments. I will present a modular hierarchical reinforcement learning agent that can learn to store arbitrary information about the environment over long time lags, perform efficient exploration and long-term planning, while generalizing across domains and tasks.\",\"PeriodicalId\":186134,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292500.3340416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3340416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在这次演讲中,我将首先讨论深度学习模型,它可以找到单词的语义有意义的表示,学习阅读文档并回答有关其内容的问题。我将展示我们如何将外部语言知识编码为循环神经网络中的外显记忆,并使用它来模拟文本中的共同引用关系。我将进一步介绍一些方法,这些方法可以用知识库中的结构化数据增强文本的神经表示,用于回答问题,并展示我们如何使用知识图中的结构化先验知识进行图像分类。最后,我将介绍结构化记忆的概念,它是智能代理在部分可观察环境中进行计划和推理的关键部分。我将介绍一个模块化的分层强化学习代理,它可以学习在长时间滞后的情况下存储关于环境的任意信息,执行有效的探索和长期规划,同时跨领域和任务进行推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Domain-Knowledge into Deep Learning
In this talk, I will first discuss deep learning models that can find semantically meaningful representations of words, learn to read documents and answer questions about their content. I will show how we can encode external linguistic knowledge as an explicit memory in recurrent neural networks, and use it to model co-reference relations in text. I will further introduce methods that can augment neural representation of text with structured data from Knowledge Bases for question answering, and show how we can use structured prior knowledge from Knowledge Graphs for image classification. Finally, I will introduce the notion of structured memory as being a crucial part of an intelligent agent's ability to plan and reason in partially observable environments. I will present a modular hierarchical reinforcement learning agent that can learn to store arbitrary information about the environment over long time lags, perform efficient exploration and long-term planning, while generalizing across domains and tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信