Mojtaba Mohseni, M. Abedi, Hossein Jafari, E. Heydarian‐Forushani, A. Al‐Sumaiti
{"title":"可再生能源发电不确定条件下微电网的最优功率和热调度","authors":"Mojtaba Mohseni, M. Abedi, Hossein Jafari, E. Heydarian‐Forushani, A. Al‐Sumaiti","doi":"10.1109/SPIES48661.2020.9242982","DOIUrl":null,"url":null,"abstract":"Technology development, government incentives, and global concerns about rising greenhouse gases make the renewable power generations to a viable option in smart microgrids. The uncertainty of renewable energy resources creates essential challenges for microgrid operator in different aspects. Moreover, the future microgrids can also supply the customer’s heat demand due to their proximity to load. On this basis, optimal operation of future microgrids is a complex problem which must be solved in an appropriate way. This paper proposed an integrated power and heat generation scheduling in microgrid context considering the uncertainty of wind and photovoltaic resources through Monte Carlo simulation approach. In order to evaluate the effectiveness of the proposed method, the model has been implemented on a typical microgrid. The obtained results reveal the effectiveness of the presented framework.","PeriodicalId":244426,"journal":{"name":"2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal Power and Heat Scheduling of Microgrids under Renewable Generation Uncertainties\",\"authors\":\"Mojtaba Mohseni, M. Abedi, Hossein Jafari, E. Heydarian‐Forushani, A. Al‐Sumaiti\",\"doi\":\"10.1109/SPIES48661.2020.9242982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technology development, government incentives, and global concerns about rising greenhouse gases make the renewable power generations to a viable option in smart microgrids. The uncertainty of renewable energy resources creates essential challenges for microgrid operator in different aspects. Moreover, the future microgrids can also supply the customer’s heat demand due to their proximity to load. On this basis, optimal operation of future microgrids is a complex problem which must be solved in an appropriate way. This paper proposed an integrated power and heat generation scheduling in microgrid context considering the uncertainty of wind and photovoltaic resources through Monte Carlo simulation approach. In order to evaluate the effectiveness of the proposed method, the model has been implemented on a typical microgrid. The obtained results reveal the effectiveness of the presented framework.\",\"PeriodicalId\":244426,\"journal\":{\"name\":\"2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIES48661.2020.9242982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIES48661.2020.9242982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Power and Heat Scheduling of Microgrids under Renewable Generation Uncertainties
Technology development, government incentives, and global concerns about rising greenhouse gases make the renewable power generations to a viable option in smart microgrids. The uncertainty of renewable energy resources creates essential challenges for microgrid operator in different aspects. Moreover, the future microgrids can also supply the customer’s heat demand due to their proximity to load. On this basis, optimal operation of future microgrids is a complex problem which must be solved in an appropriate way. This paper proposed an integrated power and heat generation scheduling in microgrid context considering the uncertainty of wind and photovoltaic resources through Monte Carlo simulation approach. In order to evaluate the effectiveness of the proposed method, the model has been implemented on a typical microgrid. The obtained results reveal the effectiveness of the presented framework.