{"title":"舰载IPS技术挑战——vfd和接地","authors":"M. Islam, W. Hinton, M. Mcclelland, K. Logan","doi":"10.1109/ESTS.2013.6523733","DOIUrl":null,"url":null,"abstract":"The design of Shipboard Integrated Power System (IPS) with variable frequency drives (VFD) are considered challenging due to the random incorporation of various commercial, emerging, and intrusive technologies. The IPS designs are found to be creating system level anomalies such as instability of the electrical system. The instability is due to multiple electrical system noise issues such as; harmonics, transients, arc-flash susceptibility, waves, etc. The type of resistance grounding (RG) system selection for ungrounded power systems may also influence the electrical stability of the power system. These electrical instabilities lead to system level blackout, premature equipment failure, major arc-flash incidents, electrical fire, and unscheduled unpredictable equipment failures, all contributing to a heavy cost burden when operating the ship.","PeriodicalId":119318,"journal":{"name":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Shipboard IPS technological chanllenges-VFD and grounding\",\"authors\":\"M. Islam, W. Hinton, M. Mcclelland, K. Logan\",\"doi\":\"10.1109/ESTS.2013.6523733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of Shipboard Integrated Power System (IPS) with variable frequency drives (VFD) are considered challenging due to the random incorporation of various commercial, emerging, and intrusive technologies. The IPS designs are found to be creating system level anomalies such as instability of the electrical system. The instability is due to multiple electrical system noise issues such as; harmonics, transients, arc-flash susceptibility, waves, etc. The type of resistance grounding (RG) system selection for ungrounded power systems may also influence the electrical stability of the power system. These electrical instabilities lead to system level blackout, premature equipment failure, major arc-flash incidents, electrical fire, and unscheduled unpredictable equipment failures, all contributing to a heavy cost burden when operating the ship.\",\"PeriodicalId\":119318,\"journal\":{\"name\":\"2013 IEEE Electric Ship Technologies Symposium (ESTS)\",\"volume\":\"266 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Electric Ship Technologies Symposium (ESTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTS.2013.6523733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTS.2013.6523733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shipboard IPS technological chanllenges-VFD and grounding
The design of Shipboard Integrated Power System (IPS) with variable frequency drives (VFD) are considered challenging due to the random incorporation of various commercial, emerging, and intrusive technologies. The IPS designs are found to be creating system level anomalies such as instability of the electrical system. The instability is due to multiple electrical system noise issues such as; harmonics, transients, arc-flash susceptibility, waves, etc. The type of resistance grounding (RG) system selection for ungrounded power systems may also influence the electrical stability of the power system. These electrical instabilities lead to system level blackout, premature equipment failure, major arc-flash incidents, electrical fire, and unscheduled unpredictable equipment failures, all contributing to a heavy cost burden when operating the ship.