ϵ-approximation算法中的四舍五入

F. Kuipers
{"title":"ϵ-approximation算法中的四舍五入","authors":"F. Kuipers","doi":"10.1109/SCVT.2006.334379","DOIUrl":null,"url":null,"abstract":"A common approach to deal with NP-hard problems is to deploy polynomial-time ϵ-approximation algorithms. These algorithms often resort to rounding and scaling to guarantee a solution that is within a factor (1 + isin) of the optimal solution. Usually, researchers either only round up or only down. In this paper we will evaluate the gain in accuracy when rounding up and down. The main application of this technique upon which we focus is quality of service routing, and specifically the restricted shortest path problem","PeriodicalId":233922,"journal":{"name":"2006 Symposium on Communications and Vehicular Technology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rounding in ϵ-approximation algorithms\",\"authors\":\"F. Kuipers\",\"doi\":\"10.1109/SCVT.2006.334379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common approach to deal with NP-hard problems is to deploy polynomial-time ϵ-approximation algorithms. These algorithms often resort to rounding and scaling to guarantee a solution that is within a factor (1 + isin) of the optimal solution. Usually, researchers either only round up or only down. In this paper we will evaluate the gain in accuracy when rounding up and down. The main application of this technique upon which we focus is quality of service routing, and specifically the restricted shortest path problem\",\"PeriodicalId\":233922,\"journal\":{\"name\":\"2006 Symposium on Communications and Vehicular Technology\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Symposium on Communications and Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCVT.2006.334379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Symposium on Communications and Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCVT.2006.334379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

处理np困难问题的一种常用方法是部署多项式时间ϵ-approximation算法。这些算法通常采用舍入和缩放来保证解在最优解的一个因子(1 + isin)内。通常,研究人员要么只四舍五入,要么只向下。在本文中,我们将评估上下舍入时的精度增益。该技术的主要应用是服务路由质量问题,特别是受限最短路径问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rounding in ϵ-approximation algorithms
A common approach to deal with NP-hard problems is to deploy polynomial-time ϵ-approximation algorithms. These algorithms often resort to rounding and scaling to guarantee a solution that is within a factor (1 + isin) of the optimal solution. Usually, researchers either only round up or only down. In this paper we will evaluate the gain in accuracy when rounding up and down. The main application of this technique upon which we focus is quality of service routing, and specifically the restricted shortest path problem
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信