通过机器学习挖掘神经退行性疾病的临床和实验室数据:转录组生物标志物

I. Arisi, M. D'Onofrio, R. Brandi, M. Sonnessa, A. Campanelli, Rita Florio, V. Sposato, F. Malerba, A. Cattaneo, P. Mecocci, G. Bruno, M. Canevelli, M. Tsolaki, N. Pelteki, F. Stocchi, L. Vacca, G. Fiscon, P. Bertolazzi
{"title":"通过机器学习挖掘神经退行性疾病的临床和实验室数据:转录组生物标志物","authors":"I. Arisi, M. D'Onofrio, R. Brandi, M. Sonnessa, A. Campanelli, Rita Florio, V. Sposato, F. Malerba, A. Cattaneo, P. Mecocci, G. Bruno, M. Canevelli, M. Tsolaki, N. Pelteki, F. Stocchi, L. Vacca, G. Fiscon, P. Bertolazzi","doi":"10.1109/BIBM.2018.8621072","DOIUrl":null,"url":null,"abstract":"Low sensitivity and specificity of current diagnostic methodologies lead to frequent misdiagnosis of Alzheimer’s and other dementia, causing an extra economic and social burden. We aim to compare real word data with the largest public databases, to extract new diagnostic models for an earlier and more accurate diagnosis of cognitive impairment. We analyzed both neuropsychological, neurological, physical assessments and transcriptomic data from biosamples. We used Machine Learning approaches and biostatistical methods to analyze the transcriptome from the large-scale ADNI and AddNeuroMed international projects: we selected some genes as potential transcriptomic biomarkers and highlighted affected cellular processes. Furthermore the analysis, by machine learning, of real-world data provided by European clinical dementia centres, resulted in a small subset of comorbidities able to discriminate diagnostic classes with a good classifier performance.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mining clinical and laboratory data of neurodegenerative diseases by Machine Learning: transcriptomic biomarkers\",\"authors\":\"I. Arisi, M. D'Onofrio, R. Brandi, M. Sonnessa, A. Campanelli, Rita Florio, V. Sposato, F. Malerba, A. Cattaneo, P. Mecocci, G. Bruno, M. Canevelli, M. Tsolaki, N. Pelteki, F. Stocchi, L. Vacca, G. Fiscon, P. Bertolazzi\",\"doi\":\"10.1109/BIBM.2018.8621072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low sensitivity and specificity of current diagnostic methodologies lead to frequent misdiagnosis of Alzheimer’s and other dementia, causing an extra economic and social burden. We aim to compare real word data with the largest public databases, to extract new diagnostic models for an earlier and more accurate diagnosis of cognitive impairment. We analyzed both neuropsychological, neurological, physical assessments and transcriptomic data from biosamples. We used Machine Learning approaches and biostatistical methods to analyze the transcriptome from the large-scale ADNI and AddNeuroMed international projects: we selected some genes as potential transcriptomic biomarkers and highlighted affected cellular processes. Furthermore the analysis, by machine learning, of real-world data provided by European clinical dementia centres, resulted in a small subset of comorbidities able to discriminate diagnostic classes with a good classifier performance.\",\"PeriodicalId\":108667,\"journal\":{\"name\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2018.8621072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目前诊断方法的低灵敏度和特异性导致阿尔茨海默病和其他痴呆症的频繁误诊,造成额外的经济和社会负担。我们的目标是将真实的单词数据与最大的公共数据库进行比较,以提取新的诊断模型,以便更早、更准确地诊断认知障碍。我们分析了来自生物样本的神经心理学、神经学、物理评估和转录组学数据。我们使用机器学习方法和生物统计学方法分析来自大规模ADNI和AddNeuroMed国际项目的转录组:我们选择了一些基因作为潜在的转录组生物标志物,并强调了受影响的细胞过程。此外,通过机器学习对欧洲临床痴呆中心提供的真实世界数据进行分析,发现一小部分合并症能够以良好的分类器性能区分诊断类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining clinical and laboratory data of neurodegenerative diseases by Machine Learning: transcriptomic biomarkers
Low sensitivity and specificity of current diagnostic methodologies lead to frequent misdiagnosis of Alzheimer’s and other dementia, causing an extra economic and social burden. We aim to compare real word data with the largest public databases, to extract new diagnostic models for an earlier and more accurate diagnosis of cognitive impairment. We analyzed both neuropsychological, neurological, physical assessments and transcriptomic data from biosamples. We used Machine Learning approaches and biostatistical methods to analyze the transcriptome from the large-scale ADNI and AddNeuroMed international projects: we selected some genes as potential transcriptomic biomarkers and highlighted affected cellular processes. Furthermore the analysis, by machine learning, of real-world data provided by European clinical dementia centres, resulted in a small subset of comorbidities able to discriminate diagnostic classes with a good classifier performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信