{"title":"重新考虑集群文件系统的单故障恢复","authors":"Zhirong Shen, J. Shu, P. Lee","doi":"10.1109/DSN.2016.37","DOIUrl":null,"url":null,"abstract":"How to improve the performance of single failure recovery has been an active research topic because of its prevalence in large-scale storage systems. We argue that when erasure coding is deployed in a cluster file system (CFS), existing single failure recovery designs are limited in different aspects: neglecting the bandwidth diversity property in a CFS architecture, targeting specific erasure code constructions, and no special treatment on load balancing during recovery. In this paper, we reconsider the single failure recovery problem in a CFS setting, and propose CAR, a cross-rack-aware recovery algorithm. For each stripe, CAR finds a recovery solution that retrieves data from the minimum number of racks. It also reduces the amount of cross-rack repair traffic by performing intra-rack data aggregation prior to cross-rack transmission. Furthermore, by considering multi-stripe recovery, CAR balances the amount of cross-rack repair traffic across multiple racks. Evaluation results show that CAR can effectively reduce the amount of cross-rack repair traffic and the resulting recovery time.","PeriodicalId":102292,"journal":{"name":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Reconsidering Single Failure Recovery in Clustered File Systems\",\"authors\":\"Zhirong Shen, J. Shu, P. Lee\",\"doi\":\"10.1109/DSN.2016.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to improve the performance of single failure recovery has been an active research topic because of its prevalence in large-scale storage systems. We argue that when erasure coding is deployed in a cluster file system (CFS), existing single failure recovery designs are limited in different aspects: neglecting the bandwidth diversity property in a CFS architecture, targeting specific erasure code constructions, and no special treatment on load balancing during recovery. In this paper, we reconsider the single failure recovery problem in a CFS setting, and propose CAR, a cross-rack-aware recovery algorithm. For each stripe, CAR finds a recovery solution that retrieves data from the minimum number of racks. It also reduces the amount of cross-rack repair traffic by performing intra-rack data aggregation prior to cross-rack transmission. Furthermore, by considering multi-stripe recovery, CAR balances the amount of cross-rack repair traffic across multiple racks. Evaluation results show that CAR can effectively reduce the amount of cross-rack repair traffic and the resulting recovery time.\",\"PeriodicalId\":102292,\"journal\":{\"name\":\"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN.2016.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2016.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reconsidering Single Failure Recovery in Clustered File Systems
How to improve the performance of single failure recovery has been an active research topic because of its prevalence in large-scale storage systems. We argue that when erasure coding is deployed in a cluster file system (CFS), existing single failure recovery designs are limited in different aspects: neglecting the bandwidth diversity property in a CFS architecture, targeting specific erasure code constructions, and no special treatment on load balancing during recovery. In this paper, we reconsider the single failure recovery problem in a CFS setting, and propose CAR, a cross-rack-aware recovery algorithm. For each stripe, CAR finds a recovery solution that retrieves data from the minimum number of racks. It also reduces the amount of cross-rack repair traffic by performing intra-rack data aggregation prior to cross-rack transmission. Furthermore, by considering multi-stripe recovery, CAR balances the amount of cross-rack repair traffic across multiple racks. Evaluation results show that CAR can effectively reduce the amount of cross-rack repair traffic and the resulting recovery time.