基于Transformer的视网膜血管分割像素行列关系建模网络

Zekang Qiu, J. Zhao, Chudong Shan, Jianyong Huang, Zhiyong Yuan
{"title":"基于Transformer的视网膜血管分割像素行列关系建模网络","authors":"Zekang Qiu, J. Zhao, Chudong Shan, Jianyong Huang, Zhiyong Yuan","doi":"10.1109/IJCNN55064.2022.9892650","DOIUrl":null,"url":null,"abstract":"Performing automatic retinal vessel segmentation on fundus image can obtain clear retinal vessel structure quickly, which will assist doctors to improve the efficiency and reliability of diagnosis. In fundus image, there are many small vessels and some areas with low contrast, and there may be abnormal areas. Therefore, achieving automatic retinal vessel segmentation with high performance is still challenging. The retinal vessel in the image is a topological structure, so the distribution of retinal vessel pixels in each pixel row (or column) should have some relationship to other rows (or columns). Motivated by this observation, we propose Pixel Rows and Columns Relationship Modeling Network (PRCRM-Net) to achieve high-performance retinal vessel segmentation. PRCRM-Net separately models the relationship between different pixel rows and pixel columns of fundus image, and achieves retinal vessel segmentation by classifying the pixels in units of pixel row and pixel column. The input of PRCRM-Net is the feature map extracted by U-Net. PRCRM-Net firstly processes the input feature map into row feature sequence and column feature sequence respectively. Secondly, it models the relationship between the elements in the row feature sequence and column feature sequence respectively based on Transformer. Finally, the updated row feature sequence and column feature sequence are used to obtain row-based segmentation result and column-based segmentation result respectively. And the final segmentation result is the combination of these two types of results. To evaluate the performance of PRCRM-Net, we conduct comprehensive experiments on three representative datasets, DRIVE, STARE and CHASE_DB1. The experiment results show that the proposed PRCRM-Net achieves state-of-the-art performance.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pixel Rows and Columns Relationship Modeling Network based on Transformer for Retinal Vessel Segmentation\",\"authors\":\"Zekang Qiu, J. Zhao, Chudong Shan, Jianyong Huang, Zhiyong Yuan\",\"doi\":\"10.1109/IJCNN55064.2022.9892650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performing automatic retinal vessel segmentation on fundus image can obtain clear retinal vessel structure quickly, which will assist doctors to improve the efficiency and reliability of diagnosis. In fundus image, there are many small vessels and some areas with low contrast, and there may be abnormal areas. Therefore, achieving automatic retinal vessel segmentation with high performance is still challenging. The retinal vessel in the image is a topological structure, so the distribution of retinal vessel pixels in each pixel row (or column) should have some relationship to other rows (or columns). Motivated by this observation, we propose Pixel Rows and Columns Relationship Modeling Network (PRCRM-Net) to achieve high-performance retinal vessel segmentation. PRCRM-Net separately models the relationship between different pixel rows and pixel columns of fundus image, and achieves retinal vessel segmentation by classifying the pixels in units of pixel row and pixel column. The input of PRCRM-Net is the feature map extracted by U-Net. PRCRM-Net firstly processes the input feature map into row feature sequence and column feature sequence respectively. Secondly, it models the relationship between the elements in the row feature sequence and column feature sequence respectively based on Transformer. Finally, the updated row feature sequence and column feature sequence are used to obtain row-based segmentation result and column-based segmentation result respectively. And the final segmentation result is the combination of these two types of results. To evaluate the performance of PRCRM-Net, we conduct comprehensive experiments on three representative datasets, DRIVE, STARE and CHASE_DB1. The experiment results show that the proposed PRCRM-Net achieves state-of-the-art performance.\",\"PeriodicalId\":106974,\"journal\":{\"name\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN55064.2022.9892650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对眼底图像进行视网膜血管自动分割,可以快速获得清晰的视网膜血管结构,有助于医生提高诊断的效率和可靠性。眼底图像可见小血管较多,部分对比度较低的区域,可能有异常区域。因此,实现高性能的视网膜血管自动分割仍然是一个挑战。图像中的视网膜血管是一种拓扑结构,因此视网膜血管像素在每个像素行(或列)中的分布应该与其他行(或列)有一定的关系。基于这一观察结果,我们提出了像素行和列关系建模网络(PRCRM-Net)来实现高性能的视网膜血管分割。prcr - net分别对眼底图像不同像素行和像素列之间的关系进行建模,以像素行和像素列为单位对像素进行分类,实现视网膜血管分割。prcr - net的输入是U-Net提取的特征图。prcr - net首先将输入的特征映射分别处理成行特征序列和列特征序列。其次,基于Transformer分别对行特征序列和列特征序列中元素之间的关系进行建模;最后,利用更新后的行特征序列和列特征序列分别获得基于行和基于列的分割结果。最后的分割结果就是这两种结果的结合。为了评估PRCRM-Net的性能,我们在DRIVE、STARE和CHASE_DB1三个具有代表性的数据集上进行了综合实验。实验结果表明,所提出的PRCRM-Net达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pixel Rows and Columns Relationship Modeling Network based on Transformer for Retinal Vessel Segmentation
Performing automatic retinal vessel segmentation on fundus image can obtain clear retinal vessel structure quickly, which will assist doctors to improve the efficiency and reliability of diagnosis. In fundus image, there are many small vessels and some areas with low contrast, and there may be abnormal areas. Therefore, achieving automatic retinal vessel segmentation with high performance is still challenging. The retinal vessel in the image is a topological structure, so the distribution of retinal vessel pixels in each pixel row (or column) should have some relationship to other rows (or columns). Motivated by this observation, we propose Pixel Rows and Columns Relationship Modeling Network (PRCRM-Net) to achieve high-performance retinal vessel segmentation. PRCRM-Net separately models the relationship between different pixel rows and pixel columns of fundus image, and achieves retinal vessel segmentation by classifying the pixels in units of pixel row and pixel column. The input of PRCRM-Net is the feature map extracted by U-Net. PRCRM-Net firstly processes the input feature map into row feature sequence and column feature sequence respectively. Secondly, it models the relationship between the elements in the row feature sequence and column feature sequence respectively based on Transformer. Finally, the updated row feature sequence and column feature sequence are used to obtain row-based segmentation result and column-based segmentation result respectively. And the final segmentation result is the combination of these two types of results. To evaluate the performance of PRCRM-Net, we conduct comprehensive experiments on three representative datasets, DRIVE, STARE and CHASE_DB1. The experiment results show that the proposed PRCRM-Net achieves state-of-the-art performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信