{"title":"接触Calabi-Yau 7流形上的异质𝐺2体系","authors":"Jason D. Lotay, H. S. Earp","doi":"10.1090/btran/129","DOIUrl":null,"url":null,"abstract":"<p>We obtain non-trivial approximate solutions to the heterotic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper G 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">G</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {G}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> system on the total spaces of non-trivial circle bundles over Calabi–Yau <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-orbifolds, which satisfy the equations up to an arbitrarily small error, by adjusting the size of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S Superscript 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">S^1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> fibres in proportion to a power of the string constant <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha prime\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>′</mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\alpha ’</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Each approximate solution provides a cocalibrated <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper G 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">G</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {G}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-structure, the torsion of which realises a non-trivial scalar field, a constant (trivial) dilaton field and an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-flux with non-trivial Chern–Simons defect. The approximate solutions also include a connection on the tangent bundle which, together with a non-flat <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper G 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">G</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {G}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-instanton induced from the horizontal Calabi–Yau metric, satisfy the anomaly-free condition, also known as the heterotic Bianchi identity. The approximate solutions fail to be genuine solutions solely because the connections on the tangent bundle are only <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper G 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">G</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {G}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-instantons up to higher order corrections in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha prime\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>′</mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\alpha ’</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The heterotic 𝐺₂ system on contact Calabi–Yau 7-manifolds\",\"authors\":\"Jason D. Lotay, H. S. Earp\",\"doi\":\"10.1090/btran/129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain non-trivial approximate solutions to the heterotic <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper G 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {G}_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> system on the total spaces of non-trivial circle bundles over Calabi–Yau <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\">\\n <mml:semantics>\\n <mml:mn>3</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-orbifolds, which satisfy the equations up to an arbitrarily small error, by adjusting the size of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S Superscript 1\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>S</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">S^1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> fibres in proportion to a power of the string constant <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha prime\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mo>′</mml:mo>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha ’</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Each approximate solution provides a cocalibrated <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper G 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {G}_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-structure, the torsion of which realises a non-trivial scalar field, a constant (trivial) dilaton field and an <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H\\\">\\n <mml:semantics>\\n <mml:mi>H</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-flux with non-trivial Chern–Simons defect. The approximate solutions also include a connection on the tangent bundle which, together with a non-flat <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper G 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {G}_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-instanton induced from the horizontal Calabi–Yau metric, satisfy the anomaly-free condition, also known as the heterotic Bianchi identity. The approximate solutions fail to be genuine solutions solely because the connections on the tangent bundle are only <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper G 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {G}_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-instantons up to higher order corrections in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"alpha prime\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>α<!-- α --></mml:mi>\\n <mml:mo>′</mml:mo>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\alpha ’</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The heterotic 𝐺₂ system on contact Calabi–Yau 7-manifolds
We obtain non-trivial approximate solutions to the heterotic G2\mathrm {G}_2 system on the total spaces of non-trivial circle bundles over Calabi–Yau 33-orbifolds, which satisfy the equations up to an arbitrarily small error, by adjusting the size of the S1S^1 fibres in proportion to a power of the string constant α′\alpha ’. Each approximate solution provides a cocalibrated G2\mathrm {G}_2-structure, the torsion of which realises a non-trivial scalar field, a constant (trivial) dilaton field and an HH-flux with non-trivial Chern–Simons defect. The approximate solutions also include a connection on the tangent bundle which, together with a non-flat G2\mathrm {G}_2-instanton induced from the horizontal Calabi–Yau metric, satisfy the anomaly-free condition, also known as the heterotic Bianchi identity. The approximate solutions fail to be genuine solutions solely because the connections on the tangent bundle are only G2\mathrm {G}_2-instantons up to higher order corrections in α′\alpha ’.