基于Android的气象系统,采用模拟神经网络的反向宣传方法

Adi Arga Arifnur, Jefril Rahmadoni, Ullya Mega Wahyuni
{"title":"基于Android的气象系统,采用模拟神经网络的反向宣传方法","authors":"Adi Arga Arifnur, Jefril Rahmadoni, Ullya Mega Wahyuni","doi":"10.37595/mediainfo.v22i2.180","DOIUrl":null,"url":null,"abstract":"This research aims to develop a weather forecasting system using an Android-based mobile device combined with a microcontroller platform. The device built consists of a DHT11 sensor, Arduino UNO microcontroller, HC-05 Bluetooth module, and an Android phone that is used by users to view weather information. The Neural Network Backpropagation method is useful as a learning algorithm in obtaining appropriate weights so that the system is able to make weather forecasts correctly. Temperature and humidity data from the Padang City BMKG are used as input data to the Matlab application to be trained to find accurate patterns and weights. This appropriate weight is useful as a weighing factor in the Backpropagation testing process on Arduino Uno. In the process, the system works to measure temperature and humidity with the DHT11 sensor, then Arduino processes the input from the sensor to then send the results to the Android application. The test results with 14 trial data revealed that the system with the Neural Network Backpropagation learning method had a success rate of 78.6% for measuring and forecasting the weather.","PeriodicalId":109095,"journal":{"name":"Media Informatika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sistem Prakiraan Cuaca Berbasis Android dengan Metode Jaringan Syaraf Tiruan Backpropagation\",\"authors\":\"Adi Arga Arifnur, Jefril Rahmadoni, Ullya Mega Wahyuni\",\"doi\":\"10.37595/mediainfo.v22i2.180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to develop a weather forecasting system using an Android-based mobile device combined with a microcontroller platform. The device built consists of a DHT11 sensor, Arduino UNO microcontroller, HC-05 Bluetooth module, and an Android phone that is used by users to view weather information. The Neural Network Backpropagation method is useful as a learning algorithm in obtaining appropriate weights so that the system is able to make weather forecasts correctly. Temperature and humidity data from the Padang City BMKG are used as input data to the Matlab application to be trained to find accurate patterns and weights. This appropriate weight is useful as a weighing factor in the Backpropagation testing process on Arduino Uno. In the process, the system works to measure temperature and humidity with the DHT11 sensor, then Arduino processes the input from the sensor to then send the results to the Android application. The test results with 14 trial data revealed that the system with the Neural Network Backpropagation learning method had a success rate of 78.6% for measuring and forecasting the weather.\",\"PeriodicalId\":109095,\"journal\":{\"name\":\"Media Informatika\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Media Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37595/mediainfo.v22i2.180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Media Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37595/mediainfo.v22i2.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用基于android的移动设备结合微控制器平台开发一个天气预报系统。该设备由DHT11传感器、Arduino UNO微控制器、HC-05蓝牙模块和用户用于查看天气信息的Android手机组成。神经网络反向传播方法是一种有用的学习算法,可以获得适当的权重,使系统能够正确地进行天气预报。巴东市BMKG的温度和湿度数据作为Matlab应用程序的输入数据进行训练,以找到准确的模式和权重。这个适当的权重在Arduino Uno上的反向传播测试过程中作为一个加权因子是有用的。在此过程中,系统通过DHT11传感器测量温度和湿度,然后Arduino处理传感器的输入,然后将结果发送给Android应用程序。14个试验数据的测试结果表明,采用神经网络反向传播学习方法的系统对天气进行测量和预报的成功率为78.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sistem Prakiraan Cuaca Berbasis Android dengan Metode Jaringan Syaraf Tiruan Backpropagation
This research aims to develop a weather forecasting system using an Android-based mobile device combined with a microcontroller platform. The device built consists of a DHT11 sensor, Arduino UNO microcontroller, HC-05 Bluetooth module, and an Android phone that is used by users to view weather information. The Neural Network Backpropagation method is useful as a learning algorithm in obtaining appropriate weights so that the system is able to make weather forecasts correctly. Temperature and humidity data from the Padang City BMKG are used as input data to the Matlab application to be trained to find accurate patterns and weights. This appropriate weight is useful as a weighing factor in the Backpropagation testing process on Arduino Uno. In the process, the system works to measure temperature and humidity with the DHT11 sensor, then Arduino processes the input from the sensor to then send the results to the Android application. The test results with 14 trial data revealed that the system with the Neural Network Backpropagation learning method had a success rate of 78.6% for measuring and forecasting the weather.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信