数据库异常活动检测和量化

Elisa Costante, Sokratis Vavilis, S. Etalle, J. D. Hartog, M. Petkovic, Nicola Zannone
{"title":"数据库异常活动检测和量化","authors":"Elisa Costante, Sokratis Vavilis, S. Etalle, J. D. Hartog, M. Petkovic, Nicola Zannone","doi":"10.5220/0004612206030608","DOIUrl":null,"url":null,"abstract":"The disclosure of sensitive data to unauthorized entities is a critical issue for organizations. Timely detection of data leakage is crucial to reduce possible damages. Therefore, breaches should be detected as early as possible, e.g., when data are leaving the database. In this paper, we focus on data leakage detection by monitoring database activities. We present a framework that automatically learns normal user behavior, in terms of database activities, and detects anomalies as deviation from such behavior. In addition, our approach explicitly indicates the root cause of an anomaly. Finally, the framework assesses the severity of data leakages based on the sensitivity of the disclosed data.","PeriodicalId":174026,"journal":{"name":"2013 International Conference on Security and Cryptography (SECRYPT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Database anomalous activities detection and quantification\",\"authors\":\"Elisa Costante, Sokratis Vavilis, S. Etalle, J. D. Hartog, M. Petkovic, Nicola Zannone\",\"doi\":\"10.5220/0004612206030608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The disclosure of sensitive data to unauthorized entities is a critical issue for organizations. Timely detection of data leakage is crucial to reduce possible damages. Therefore, breaches should be detected as early as possible, e.g., when data are leaving the database. In this paper, we focus on data leakage detection by monitoring database activities. We present a framework that automatically learns normal user behavior, in terms of database activities, and detects anomalies as deviation from such behavior. In addition, our approach explicitly indicates the root cause of an anomaly. Finally, the framework assesses the severity of data leakages based on the sensitivity of the disclosed data.\",\"PeriodicalId\":174026,\"journal\":{\"name\":\"2013 International Conference on Security and Cryptography (SECRYPT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Security and Cryptography (SECRYPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0004612206030608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Security and Cryptography (SECRYPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0004612206030608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

将敏感数据泄露给未经授权的实体是组织面临的一个关键问题。及时发现数据泄漏对于减少可能造成的损害至关重要。因此,应该尽早发现漏洞,例如,当数据离开数据库时。在本文中,我们主要关注通过监控数据库活动来检测数据泄漏。我们提出了一个框架,自动学习正常的用户行为,在数据库活动方面,并检测异常偏离这种行为。此外,我们的方法明确指出了异常的根本原因。最后,该框架根据所披露数据的敏感性评估数据泄露的严重程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Database anomalous activities detection and quantification
The disclosure of sensitive data to unauthorized entities is a critical issue for organizations. Timely detection of data leakage is crucial to reduce possible damages. Therefore, breaches should be detected as early as possible, e.g., when data are leaving the database. In this paper, we focus on data leakage detection by monitoring database activities. We present a framework that automatically learns normal user behavior, in terms of database activities, and detects anomalies as deviation from such behavior. In addition, our approach explicitly indicates the root cause of an anomaly. Finally, the framework assesses the severity of data leakages based on the sensitivity of the disclosed data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信