GF(2m)上椭圆曲线密码系统算法的硬件实现

M. Amara, Amar Siad
{"title":"GF(2m)上椭圆曲线密码系统算法的硬件实现","authors":"M. Amara, Amar Siad","doi":"10.1109/WORLDCIS17046.2011.5749886","DOIUrl":null,"url":null,"abstract":"The Elliptic Curve Cryptography covers all relevant asymmetric cryptographic primitives like digital signatures and key agreement algorithms. In the present work, we develop a design of elliptic curve operations over binary Fields GF(2m). The function used for this purpose is the scalar multiplication kP which is the core operation of ECCs. Where k is an integer and P is a point on an elliptic curve. The EC Point multiplication processor defined in affine coordinates is achieved by using a dedicated Galois Field arithmetic implemented on FPGA using VHDL language.","PeriodicalId":204568,"journal":{"name":"2011 World Congress on Internet Security (WorldCIS-2011)","volume":"296 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Hardware implementation of arithmetic for elliptic curve cryptosystems over GF(2m)\",\"authors\":\"M. Amara, Amar Siad\",\"doi\":\"10.1109/WORLDCIS17046.2011.5749886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Elliptic Curve Cryptography covers all relevant asymmetric cryptographic primitives like digital signatures and key agreement algorithms. In the present work, we develop a design of elliptic curve operations over binary Fields GF(2m). The function used for this purpose is the scalar multiplication kP which is the core operation of ECCs. Where k is an integer and P is a point on an elliptic curve. The EC Point multiplication processor defined in affine coordinates is achieved by using a dedicated Galois Field arithmetic implemented on FPGA using VHDL language.\",\"PeriodicalId\":204568,\"journal\":{\"name\":\"2011 World Congress on Internet Security (WorldCIS-2011)\",\"volume\":\"296 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 World Congress on Internet Security (WorldCIS-2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WORLDCIS17046.2011.5749886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 World Congress on Internet Security (WorldCIS-2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORLDCIS17046.2011.5749886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

椭圆曲线密码学涵盖了所有相关的非对称密码学原语,如数字签名和密钥协议算法。本文提出了一种二元域GF(2m)上椭圆曲线运算的设计方法。用于此目的的函数是标量乘法kP,它是ecc的核心操作。k是一个整数,P是椭圆曲线上的一个点。用VHDL语言在FPGA上实现了专用伽罗瓦域算法,实现了仿射坐标下的EC点乘法处理器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware implementation of arithmetic for elliptic curve cryptosystems over GF(2m)
The Elliptic Curve Cryptography covers all relevant asymmetric cryptographic primitives like digital signatures and key agreement algorithms. In the present work, we develop a design of elliptic curve operations over binary Fields GF(2m). The function used for this purpose is the scalar multiplication kP which is the core operation of ECCs. Where k is an integer and P is a point on an elliptic curve. The EC Point multiplication processor defined in affine coordinates is achieved by using a dedicated Galois Field arithmetic implemented on FPGA using VHDL language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信