多变量时间序列数据分类的通用方法

A. Zagorecki
{"title":"多变量时间序列数据分类的通用方法","authors":"A. Zagorecki","doi":"10.15439/2015F419","DOIUrl":null,"url":null,"abstract":"During the recent decade we have experienced a rise of popularity of sensors capable of collecting large amounts of data. One of most popular types of data collected by sensors is time series composed of sequences of measurements taken over time. With low cost of individual sensors, multivariate time series data sets are becoming common. Examples can include vehicle or machinery monitoring, sensors from smartphones or sensor suites installed on a human body. This paper describes a generic method that can be applied to arbitrary set of multivariate time series data in order to perform classification or regression tasks. This method was applied to the 2015 AAIA Data Mining Competition concerned with classifying firefighter activities and consecutively led to achieving the second-high score of nearly 80 participant teams.","PeriodicalId":276884,"journal":{"name":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A versatile approach to classification of multivariate time series data\",\"authors\":\"A. Zagorecki\",\"doi\":\"10.15439/2015F419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the recent decade we have experienced a rise of popularity of sensors capable of collecting large amounts of data. One of most popular types of data collected by sensors is time series composed of sequences of measurements taken over time. With low cost of individual sensors, multivariate time series data sets are becoming common. Examples can include vehicle or machinery monitoring, sensors from smartphones or sensor suites installed on a human body. This paper describes a generic method that can be applied to arbitrary set of multivariate time series data in order to perform classification or regression tasks. This method was applied to the 2015 AAIA Data Mining Competition concerned with classifying firefighter activities and consecutively led to achieving the second-high score of nearly 80 participant teams.\",\"PeriodicalId\":276884,\"journal\":{\"name\":\"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15439/2015F419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2015F419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在最近十年中,我们经历了能够收集大量数据的传感器的普及。传感器收集的最受欢迎的数据类型之一是由随时间推移的测量序列组成的时间序列。随着单个传感器成本的降低,多变量时间序列数据集变得越来越普遍。例子包括车辆或机械监控、智能手机传感器或安装在人体上的传感器套件。本文描述了一种可用于任意多变量时间序列数据集以执行分类或回归任务的通用方法。该方法应用于2015年AAIA消防员活动分类数据挖掘大赛,连续获得近80支参赛队伍的第二高成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A versatile approach to classification of multivariate time series data
During the recent decade we have experienced a rise of popularity of sensors capable of collecting large amounts of data. One of most popular types of data collected by sensors is time series composed of sequences of measurements taken over time. With low cost of individual sensors, multivariate time series data sets are becoming common. Examples can include vehicle or machinery monitoring, sensors from smartphones or sensor suites installed on a human body. This paper describes a generic method that can be applied to arbitrary set of multivariate time series data in order to perform classification or regression tasks. This method was applied to the 2015 AAIA Data Mining Competition concerned with classifying firefighter activities and consecutively led to achieving the second-high score of nearly 80 participant teams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信