{"title":"利用双曲正切隶属函数求解模糊环境下线性规划的Bector-Chandra对偶性","authors":"Pratiksha Saxena, Ravi Jain","doi":"10.4018/IJFSA.2019040105","DOIUrl":null,"url":null,"abstract":"Multi-objective optimization has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. One approach to optimize a multi-objective mathematical model is to employ utility functions for the objectives. Recent studies on utility-based multi-objective optimization concentrates on considering just one utility function for each objective. But, in reality, it is not reasonable to have a unique utility function corresponding to each objective function. Here, a constrained multi-objective mathematical model is considered in which several utility functions are associated for each objective. All of these utility functions are uncertain and in fuzzy form, so a fuzzy probabilistic approach is incorporated to investigate the uncertainty of the utility functions for each objective. Meanwhile, the total utility function of the problem will be a fuzzy nonlinear mathematical model. Since there are not any conventional approaches to solve such a model, a defuzzification method to change the total utility function to a crisp nonlinear model is employed. Also, a maximum technique is applied to defuzzify the conditional utility functions. This action results in changing the total utility function to a crisp single objective nonlinear model and will simplify the optimization process of the total utility function. The effectiveness of the proposed approach is shown by solving a test problem.","PeriodicalId":233724,"journal":{"name":"Int. J. Fuzzy Syst. Appl.","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bector-Chandra Type Duality in Linear Programming Under Fuzzy Environment Using Hyperbolic Tangent Membership Functions\",\"authors\":\"Pratiksha Saxena, Ravi Jain\",\"doi\":\"10.4018/IJFSA.2019040105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-objective optimization has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. One approach to optimize a multi-objective mathematical model is to employ utility functions for the objectives. Recent studies on utility-based multi-objective optimization concentrates on considering just one utility function for each objective. But, in reality, it is not reasonable to have a unique utility function corresponding to each objective function. Here, a constrained multi-objective mathematical model is considered in which several utility functions are associated for each objective. All of these utility functions are uncertain and in fuzzy form, so a fuzzy probabilistic approach is incorporated to investigate the uncertainty of the utility functions for each objective. Meanwhile, the total utility function of the problem will be a fuzzy nonlinear mathematical model. Since there are not any conventional approaches to solve such a model, a defuzzification method to change the total utility function to a crisp nonlinear model is employed. Also, a maximum technique is applied to defuzzify the conditional utility functions. This action results in changing the total utility function to a crisp single objective nonlinear model and will simplify the optimization process of the total utility function. The effectiveness of the proposed approach is shown by solving a test problem.\",\"PeriodicalId\":233724,\"journal\":{\"name\":\"Int. J. Fuzzy Syst. Appl.\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Fuzzy Syst. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJFSA.2019040105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Syst. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJFSA.2019040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bector-Chandra Type Duality in Linear Programming Under Fuzzy Environment Using Hyperbolic Tangent Membership Functions
Multi-objective optimization has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. One approach to optimize a multi-objective mathematical model is to employ utility functions for the objectives. Recent studies on utility-based multi-objective optimization concentrates on considering just one utility function for each objective. But, in reality, it is not reasonable to have a unique utility function corresponding to each objective function. Here, a constrained multi-objective mathematical model is considered in which several utility functions are associated for each objective. All of these utility functions are uncertain and in fuzzy form, so a fuzzy probabilistic approach is incorporated to investigate the uncertainty of the utility functions for each objective. Meanwhile, the total utility function of the problem will be a fuzzy nonlinear mathematical model. Since there are not any conventional approaches to solve such a model, a defuzzification method to change the total utility function to a crisp nonlinear model is employed. Also, a maximum technique is applied to defuzzify the conditional utility functions. This action results in changing the total utility function to a crisp single objective nonlinear model and will simplify the optimization process of the total utility function. The effectiveness of the proposed approach is shown by solving a test problem.