基于低秩和稀疏分解的视频异常检测

Lam Tran, C. Navasca, Jiebo Luo
{"title":"基于低秩和稀疏分解的视频异常检测","authors":"Lam Tran, C. Navasca, Jiebo Luo","doi":"10.1109/WNYIPW.2012.6466649","DOIUrl":null,"url":null,"abstract":"In this paper, we purpose a method for anomaly detection in surveillance video in a tensor framework. We treat a video as a tensor and utilize a stable PCA to decompose it into two tensors, the first tensor is a low rank tensor that consists of background pixels and the second tensor is a sparse tensor that consists of the foreground pixels. The sparse tensor is then analyzed to detect anomaly. The proposed method is a one-shot framework to determine frames that are anomalous in a video.","PeriodicalId":218110,"journal":{"name":"2012 Western New York Image Processing Workshop","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Video detection anomaly via low-rank and sparse decompositions\",\"authors\":\"Lam Tran, C. Navasca, Jiebo Luo\",\"doi\":\"10.1109/WNYIPW.2012.6466649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we purpose a method for anomaly detection in surveillance video in a tensor framework. We treat a video as a tensor and utilize a stable PCA to decompose it into two tensors, the first tensor is a low rank tensor that consists of background pixels and the second tensor is a sparse tensor that consists of the foreground pixels. The sparse tensor is then analyzed to detect anomaly. The proposed method is a one-shot framework to determine frames that are anomalous in a video.\",\"PeriodicalId\":218110,\"journal\":{\"name\":\"2012 Western New York Image Processing Workshop\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Western New York Image Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WNYIPW.2012.6466649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Western New York Image Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYIPW.2012.6466649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文提出了一种基于张量框架的监控视频异常检测方法。我们将视频视为一个张量,并利用稳定的PCA将其分解为两个张量,第一个张量是由背景像素组成的低秩张量,第二个张量是由前景像素组成的稀疏张量。然后对稀疏张量进行分析以检测异常。提出的方法是一个单镜头框架来确定视频中的异常帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video detection anomaly via low-rank and sparse decompositions
In this paper, we purpose a method for anomaly detection in surveillance video in a tensor framework. We treat a video as a tensor and utilize a stable PCA to decompose it into two tensors, the first tensor is a low rank tensor that consists of background pixels and the second tensor is a sparse tensor that consists of the foreground pixels. The sparse tensor is then analyzed to detect anomaly. The proposed method is a one-shot framework to determine frames that are anomalous in a video.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信