基于遗传算法的活性污泥工艺识别

Intissar Khoja, T. Ladhari, A. Sakly, F. Msahli
{"title":"基于遗传算法的活性污泥工艺识别","authors":"Intissar Khoja, T. Ladhari, A. Sakly, F. Msahli","doi":"10.1109/ICEMIS.2017.8273013","DOIUrl":null,"url":null,"abstract":"This paper investigates the application of an optimization method, which is the genetic algorithm, in order to identify the parameters of an activated sludge process for waste water treatment. The studied model is a hybrid reduced-order one. The genetic algorithm tries to find out the optimal parameters that ensure a minimal mean square error between the measured and simulation outputs. Simulation results show the competence of the proposed approach to seize the true model's parameter values.","PeriodicalId":117908,"journal":{"name":"2017 International Conference on Engineering & MIS (ICEMIS)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Activated sludge process identification based on genetic algorithm\",\"authors\":\"Intissar Khoja, T. Ladhari, A. Sakly, F. Msahli\",\"doi\":\"10.1109/ICEMIS.2017.8273013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the application of an optimization method, which is the genetic algorithm, in order to identify the parameters of an activated sludge process for waste water treatment. The studied model is a hybrid reduced-order one. The genetic algorithm tries to find out the optimal parameters that ensure a minimal mean square error between the measured and simulation outputs. Simulation results show the competence of the proposed approach to seize the true model's parameter values.\",\"PeriodicalId\":117908,\"journal\":{\"name\":\"2017 International Conference on Engineering & MIS (ICEMIS)\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Engineering & MIS (ICEMIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMIS.2017.8273013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Engineering & MIS (ICEMIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMIS.2017.8273013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一种优化方法的应用,即遗传算法,以确定废水处理中活性污泥工艺的参数。所研究的模型是一个混合降阶模型。遗传算法试图找出最优参数,以确保测量输出和仿真输出之间的均方误差最小。仿真结果表明,该方法能够有效地捕捉到真实的模型参数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activated sludge process identification based on genetic algorithm
This paper investigates the application of an optimization method, which is the genetic algorithm, in order to identify the parameters of an activated sludge process for waste water treatment. The studied model is a hybrid reduced-order one. The genetic algorithm tries to find out the optimal parameters that ensure a minimal mean square error between the measured and simulation outputs. Simulation results show the competence of the proposed approach to seize the true model's parameter values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信