{"title":"基于声发射的混凝土损伤分类轻量级卷积神经网络模型","authors":"Yuxuan Zhang, S. Bader, B. Oelmann","doi":"10.1109/SAS54819.2022.9881386","DOIUrl":null,"url":null,"abstract":"In this study, a convolutional neural network (CNN) model was developed for non-destructive damage classification of concrete materials based on acoustic emission techniques. The raw acoustic emission signal is used as the network model input, while the damage type is used as the output. In the study, 15,000 acoustic emission signals were used as the dataset, of which 12,000 signals were used for training, 1,500 signals for validation, and 1,500 signals for testing. Adaptive moment estimation (Adam) was used as the learning algorithm. Batch normalization and dropout layers were used to solve the overfitting problem generated in earlier versions of the model. The proposed model achieves an accuracy of 99.70% with 20,243 parameters, which provides a significant improvement over previous models. As a result, the classification of damages and decisions based upon them in non-destructive structural health monitoring applications can be improved.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"435 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Lightweight Convolutional Neural Network Model for Concrete Damage Classification using Acoustic Emissions\",\"authors\":\"Yuxuan Zhang, S. Bader, B. Oelmann\",\"doi\":\"10.1109/SAS54819.2022.9881386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a convolutional neural network (CNN) model was developed for non-destructive damage classification of concrete materials based on acoustic emission techniques. The raw acoustic emission signal is used as the network model input, while the damage type is used as the output. In the study, 15,000 acoustic emission signals were used as the dataset, of which 12,000 signals were used for training, 1,500 signals for validation, and 1,500 signals for testing. Adaptive moment estimation (Adam) was used as the learning algorithm. Batch normalization and dropout layers were used to solve the overfitting problem generated in earlier versions of the model. The proposed model achieves an accuracy of 99.70% with 20,243 parameters, which provides a significant improvement over previous models. As a result, the classification of damages and decisions based upon them in non-destructive structural health monitoring applications can be improved.\",\"PeriodicalId\":129732,\"journal\":{\"name\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"435 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS54819.2022.9881386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Lightweight Convolutional Neural Network Model for Concrete Damage Classification using Acoustic Emissions
In this study, a convolutional neural network (CNN) model was developed for non-destructive damage classification of concrete materials based on acoustic emission techniques. The raw acoustic emission signal is used as the network model input, while the damage type is used as the output. In the study, 15,000 acoustic emission signals were used as the dataset, of which 12,000 signals were used for training, 1,500 signals for validation, and 1,500 signals for testing. Adaptive moment estimation (Adam) was used as the learning algorithm. Batch normalization and dropout layers were used to solve the overfitting problem generated in earlier versions of the model. The proposed model achieves an accuracy of 99.70% with 20,243 parameters, which provides a significant improvement over previous models. As a result, the classification of damages and decisions based upon them in non-destructive structural health monitoring applications can be improved.