圆柱形GESA IV装置产生径向会聚电子束的数值研究

R. Fetzer, W. An, A. Weisenburger, G. Mueller
{"title":"圆柱形GESA IV装置产生径向会聚电子束的数值研究","authors":"R. Fetzer, W. An, A. Weisenburger, G. Mueller","doi":"10.1109/PLASMA.2016.7534093","DOIUrl":null,"url":null,"abstract":"The cylindrical triode-type electron accelerator GESA IV was developed for treatment of metallic rods, specifically cladding tubes for nuclear reactors. The target (anode) diameter is therefore fixed at about 10 mm by the application, which leads to problems of homogeneity and stability of the radially converging beam. Due to the large difference between cathode diameter (about 150 mm) and anode diameter, a virtual cathode may form between grid and anode, electrons may miss the target and start to circulate around the anode, and the self-induced magnetic field may lead to large distortion of the electron trajectories. In this study, we investigate the influence of various crucial effects on the beam performance by PIC code simulations using the software package MAGIC. In particular, we consider monopolar and bipolar flow (i.e., the influence of ions generated at the target and moving towards the cathode), the effects of scattering at the grid and of backscattering at the target, the angular velocity spread of the electrons at emission, and the influence of the grid potential. The numerical results are compared with experiments performed at the GESA IV facility, where the influence of the target material and of the self-induced magnetic field on the beam performance are investigated.","PeriodicalId":424336,"journal":{"name":"2016 IEEE International Conference on Plasma Science (ICOPS)","volume":"283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigations of radially converging electron beam generated in cylindrical GESA IV facility\",\"authors\":\"R. Fetzer, W. An, A. Weisenburger, G. Mueller\",\"doi\":\"10.1109/PLASMA.2016.7534093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cylindrical triode-type electron accelerator GESA IV was developed for treatment of metallic rods, specifically cladding tubes for nuclear reactors. The target (anode) diameter is therefore fixed at about 10 mm by the application, which leads to problems of homogeneity and stability of the radially converging beam. Due to the large difference between cathode diameter (about 150 mm) and anode diameter, a virtual cathode may form between grid and anode, electrons may miss the target and start to circulate around the anode, and the self-induced magnetic field may lead to large distortion of the electron trajectories. In this study, we investigate the influence of various crucial effects on the beam performance by PIC code simulations using the software package MAGIC. In particular, we consider monopolar and bipolar flow (i.e., the influence of ions generated at the target and moving towards the cathode), the effects of scattering at the grid and of backscattering at the target, the angular velocity spread of the electrons at emission, and the influence of the grid potential. The numerical results are compared with experiments performed at the GESA IV facility, where the influence of the target material and of the self-induced magnetic field on the beam performance are investigated.\",\"PeriodicalId\":424336,\"journal\":{\"name\":\"2016 IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":\"283 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2016.7534093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2016.7534093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

圆柱形三极管型电子加速器GESA IV是为处理金属棒,特别是核反应堆的包层管而开发的。因此,应用程序将目标(阳极)直径固定在约10毫米,这导致了径向会聚光束的均匀性和稳定性问题。由于阴极直径与阳极直径相差较大(约150mm),栅极与阳极之间可能形成虚阴极,电子可能偏离目标,开始绕阳极循环,自感磁场可能导致电子轨迹发生较大畸变。在这项研究中,我们研究了各种关键因素对波束性能的影响,并使用MAGIC软件包进行了PIC代码模拟。特别地,我们考虑了单极流和双极流(即在目标处产生并向阴极移动的离子的影响)、网格处散射和目标处后向散射的影响、发射时电子的角速度扩散以及网格电位的影响。数值结果与在GESA IV设备上进行的实验进行了比较,研究了目标材料和自感磁场对束流性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical investigations of radially converging electron beam generated in cylindrical GESA IV facility
The cylindrical triode-type electron accelerator GESA IV was developed for treatment of metallic rods, specifically cladding tubes for nuclear reactors. The target (anode) diameter is therefore fixed at about 10 mm by the application, which leads to problems of homogeneity and stability of the radially converging beam. Due to the large difference between cathode diameter (about 150 mm) and anode diameter, a virtual cathode may form between grid and anode, electrons may miss the target and start to circulate around the anode, and the self-induced magnetic field may lead to large distortion of the electron trajectories. In this study, we investigate the influence of various crucial effects on the beam performance by PIC code simulations using the software package MAGIC. In particular, we consider monopolar and bipolar flow (i.e., the influence of ions generated at the target and moving towards the cathode), the effects of scattering at the grid and of backscattering at the target, the angular velocity spread of the electrons at emission, and the influence of the grid potential. The numerical results are compared with experiments performed at the GESA IV facility, where the influence of the target material and of the self-induced magnetic field on the beam performance are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信