{"title":"用深度卷积神经网络识别阿拉伯赛马的虹膜和眼周","authors":"Mateusz Trokielewicz, M. Szadkowski","doi":"10.1109/BTAS.2017.8272736","DOIUrl":null,"url":null,"abstract":"This paper presents a study devoted to recognizing horses by means of their iris and periocular features using deep convolutional neural networks (DCNNs). Identification of race horses is crucial for animal identity confirmation prior to racing. As this is usually done shortly before a race, fast and reliable methods that are friendly and inflict no harm upon animals are important. Iris recognition has been shown to work with horse irides, provided that algorithms deployed for such task are fine-tuned for horse irides and input data is of very high quality. In our work, we examine a possibility of utilizing deep convolutional neural networks for a fusion of both iris and periocular region features. With such methodology, ocular biometrics in horses could perform well without employing complicated algorithms that require a lot offline-tuning and prior knowledge of the input image, while at the same time being rotation, translation, and to some extent also image quality invariant. We were able to achieve promising results, with EER=9.5%o using two network architectures with score-level fusion.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Iris and periocular recognition in arabian race horses using deep convolutional neural networks\",\"authors\":\"Mateusz Trokielewicz, M. Szadkowski\",\"doi\":\"10.1109/BTAS.2017.8272736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study devoted to recognizing horses by means of their iris and periocular features using deep convolutional neural networks (DCNNs). Identification of race horses is crucial for animal identity confirmation prior to racing. As this is usually done shortly before a race, fast and reliable methods that are friendly and inflict no harm upon animals are important. Iris recognition has been shown to work with horse irides, provided that algorithms deployed for such task are fine-tuned for horse irides and input data is of very high quality. In our work, we examine a possibility of utilizing deep convolutional neural networks for a fusion of both iris and periocular region features. With such methodology, ocular biometrics in horses could perform well without employing complicated algorithms that require a lot offline-tuning and prior knowledge of the input image, while at the same time being rotation, translation, and to some extent also image quality invariant. We were able to achieve promising results, with EER=9.5%o using two network architectures with score-level fusion.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iris and periocular recognition in arabian race horses using deep convolutional neural networks
This paper presents a study devoted to recognizing horses by means of their iris and periocular features using deep convolutional neural networks (DCNNs). Identification of race horses is crucial for animal identity confirmation prior to racing. As this is usually done shortly before a race, fast and reliable methods that are friendly and inflict no harm upon animals are important. Iris recognition has been shown to work with horse irides, provided that algorithms deployed for such task are fine-tuned for horse irides and input data is of very high quality. In our work, we examine a possibility of utilizing deep convolutional neural networks for a fusion of both iris and periocular region features. With such methodology, ocular biometrics in horses could perform well without employing complicated algorithms that require a lot offline-tuning and prior knowledge of the input image, while at the same time being rotation, translation, and to some extent also image quality invariant. We were able to achieve promising results, with EER=9.5%o using two network architectures with score-level fusion.