T. Hashida, Y. Tomita, Yuuki Ogata, Kosuke Suzuki, S. Suzuki, Takanori Nakao, Yuji Terao, Satofumi Honda, Sota Sakabayashi, Ryuichi Nishiyama, A. Konmoto, Yoshitomo Ozeki, H. Adachi, H. Yamaguchi, Y. Koyanagi, H. Tamura
{"title":"采用20nm CMOS的36 Gbps 16.9 mW/Gbps收发器,具有1分接DFE和四分之一速率时钟分布","authors":"T. Hashida, Y. Tomita, Yuuki Ogata, Kosuke Suzuki, S. Suzuki, Takanori Nakao, Yuji Terao, Satofumi Honda, Sota Sakabayashi, Ryuichi Nishiyama, A. Konmoto, Yoshitomo Ozeki, H. Adachi, H. Yamaguchi, Y. Koyanagi, H. Tamura","doi":"10.1109/VLSIC.2014.6858359","DOIUrl":null,"url":null,"abstract":"A 36-Gbps transceiver with a continuous-time linear equalizer and a 1-tap DFE in 20-nm CMOS is demonstrated. The transceiver uses a quarter-rate (i.e., 9-GHz) differential-clock distribution to reduce the clock-delivery power. Multi-phase half-rate clock signals that drive the transceiver front-ends are generated by a delay-locked loop and frequency doublers that systematically reduce the impact of skew and jitter. The transceiver occupies 0.55 mm2 and consumes 609.9 mW of power from a 0.9-V supply.","PeriodicalId":381216,"journal":{"name":"2014 Symposium on VLSI Circuits Digest of Technical Papers","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A 36 Gbps 16.9 mW/Gbps transceiver in 20-nm CMOS with 1-tap DFE and quarter-rate clock distribution\",\"authors\":\"T. Hashida, Y. Tomita, Yuuki Ogata, Kosuke Suzuki, S. Suzuki, Takanori Nakao, Yuji Terao, Satofumi Honda, Sota Sakabayashi, Ryuichi Nishiyama, A. Konmoto, Yoshitomo Ozeki, H. Adachi, H. Yamaguchi, Y. Koyanagi, H. Tamura\",\"doi\":\"10.1109/VLSIC.2014.6858359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 36-Gbps transceiver with a continuous-time linear equalizer and a 1-tap DFE in 20-nm CMOS is demonstrated. The transceiver uses a quarter-rate (i.e., 9-GHz) differential-clock distribution to reduce the clock-delivery power. Multi-phase half-rate clock signals that drive the transceiver front-ends are generated by a delay-locked loop and frequency doublers that systematically reduce the impact of skew and jitter. The transceiver occupies 0.55 mm2 and consumes 609.9 mW of power from a 0.9-V supply.\",\"PeriodicalId\":381216,\"journal\":{\"name\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2014.6858359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Symposium on VLSI Circuits Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2014.6858359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 36 Gbps 16.9 mW/Gbps transceiver in 20-nm CMOS with 1-tap DFE and quarter-rate clock distribution
A 36-Gbps transceiver with a continuous-time linear equalizer and a 1-tap DFE in 20-nm CMOS is demonstrated. The transceiver uses a quarter-rate (i.e., 9-GHz) differential-clock distribution to reduce the clock-delivery power. Multi-phase half-rate clock signals that drive the transceiver front-ends are generated by a delay-locked loop and frequency doublers that systematically reduce the impact of skew and jitter. The transceiver occupies 0.55 mm2 and consumes 609.9 mW of power from a 0.9-V supply.