论多智能体强化学习中利润分配的合理性

K. Miyazaki, S. Kobayashi
{"title":"论多智能体强化学习中利润分配的合理性","authors":"K. Miyazaki, S. Kobayashi","doi":"10.1109/ICCIMA.2001.970455","DOIUrl":null,"url":null,"abstract":"Reinforcement learning is a kind of machine learning. It aims to adapt an agent to an unknown environment according to rewards. Traditionally, from a theoretical point of view, many reinforcement learning systems assume that the environment has Markovian properties. However, it is important to treat non-Markovian environments in multi-agent reinforcement learning systems. The authors use Profit Sharing (PS) as a reinforcement learning system and discuss the rationality of PS in multi-agent environments. In particular, we classify non-Markovian environments and discuss how to share a reward among reinforcement learning agents. Through a crane control problem, we confirm the effectiveness of PS in multi-agent environments.","PeriodicalId":232504,"journal":{"name":"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the rationality of profit sharing in multi-agent reinforcement learning\",\"authors\":\"K. Miyazaki, S. Kobayashi\",\"doi\":\"10.1109/ICCIMA.2001.970455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning is a kind of machine learning. It aims to adapt an agent to an unknown environment according to rewards. Traditionally, from a theoretical point of view, many reinforcement learning systems assume that the environment has Markovian properties. However, it is important to treat non-Markovian environments in multi-agent reinforcement learning systems. The authors use Profit Sharing (PS) as a reinforcement learning system and discuss the rationality of PS in multi-agent environments. In particular, we classify non-Markovian environments and discuss how to share a reward among reinforcement learning agents. Through a crane control problem, we confirm the effectiveness of PS in multi-agent environments.\",\"PeriodicalId\":232504,\"journal\":{\"name\":\"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIMA.2001.970455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.2001.970455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

强化学习是机器学习的一种。它旨在根据奖励使智能体适应未知环境。传统上,从理论的角度来看,许多强化学习系统假设环境具有马尔可夫性质。然而,在多智能体强化学习系统中处理非马尔可夫环境是很重要的。将利润分享作为一种强化学习系统,讨论了多智能体环境下利润分享的合理性。特别是,我们对非马尔可夫环境进行分类,并讨论如何在强化学习代理之间共享奖励。通过一个起重机控制问题,验证了多智能体环境下PS算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the rationality of profit sharing in multi-agent reinforcement learning
Reinforcement learning is a kind of machine learning. It aims to adapt an agent to an unknown environment according to rewards. Traditionally, from a theoretical point of view, many reinforcement learning systems assume that the environment has Markovian properties. However, it is important to treat non-Markovian environments in multi-agent reinforcement learning systems. The authors use Profit Sharing (PS) as a reinforcement learning system and discuss the rationality of PS in multi-agent environments. In particular, we classify non-Markovian environments and discuss how to share a reward among reinforcement learning agents. Through a crane control problem, we confirm the effectiveness of PS in multi-agent environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信