基于主分量的压缩人脸图像分类

Z. Riaz, A. Gilgiti, Z. Ali
{"title":"基于主分量的压缩人脸图像分类","authors":"Z. Riaz, A. Gilgiti, Z. Ali","doi":"10.1109/ICICT.2005.1598566","DOIUrl":null,"url":null,"abstract":"This paper describes the novel approach of classifying the humans on the basis of their compressed face images. The compression of the face images is performed using Discrete Wavelet Transform (DWT). While the classification encompass the use of Principal Components Analysis (PCA). Classification technique utilizes PCA in some different way. Only first principal component is used as feature vector out of 92 components (since image size is 112×92), causing a better results of 87.39%. The Euclidean distance is used as distance metric. In the end our results are compared to our previous research of classifying the uncompressed images.","PeriodicalId":276741,"journal":{"name":"2005 International Conference on Information and Communication Technologies","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of Compressed Human Face Images by using Principle Components\",\"authors\":\"Z. Riaz, A. Gilgiti, Z. Ali\",\"doi\":\"10.1109/ICICT.2005.1598566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the novel approach of classifying the humans on the basis of their compressed face images. The compression of the face images is performed using Discrete Wavelet Transform (DWT). While the classification encompass the use of Principal Components Analysis (PCA). Classification technique utilizes PCA in some different way. Only first principal component is used as feature vector out of 92 components (since image size is 112×92), causing a better results of 87.39%. The Euclidean distance is used as distance metric. In the end our results are compared to our previous research of classifying the uncompressed images.\",\"PeriodicalId\":276741,\"journal\":{\"name\":\"2005 International Conference on Information and Communication Technologies\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Conference on Information and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT.2005.1598566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Conference on Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2005.1598566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文描述了一种基于压缩人脸图像的人脸分类新方法。采用离散小波变换(DWT)对人脸图像进行压缩。而分类包含主成分分析(PCA)的使用。分类技术以不同的方式利用PCA。在92个分量中只使用第一主成分作为特征向量(因为图像大小为112×92),得到了87.39%的较好结果。用欧氏距离作为距离度量。最后,将我们的结果与我们之前对未压缩图像的分类研究进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Compressed Human Face Images by using Principle Components
This paper describes the novel approach of classifying the humans on the basis of their compressed face images. The compression of the face images is performed using Discrete Wavelet Transform (DWT). While the classification encompass the use of Principal Components Analysis (PCA). Classification technique utilizes PCA in some different way. Only first principal component is used as feature vector out of 92 components (since image size is 112×92), causing a better results of 87.39%. The Euclidean distance is used as distance metric. In the end our results are compared to our previous research of classifying the uncompressed images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信