基于曲波变换和支持向量机的COVID-19检测

S. Sobia, Arslan Akram, Tuba Mansoor, Hirra Mustafa
{"title":"基于曲波变换和支持向量机的COVID-19检测","authors":"S. Sobia, Arslan Akram, Tuba Mansoor, Hirra Mustafa","doi":"10.56536/jicet.v3i1.55","DOIUrl":null,"url":null,"abstract":"As the COVID-19 virus spreads over the globe, countries all over the world are going to extraordinary measures to combat the disease. To stop it from spreading, it's critical to have a high level of awareness and a well-thought-out COVID-19 recognition approach. By analyzing different methods and image-based detection using chest x-ray images, a technique was proposed in this study that includes preprocessing, texture feature analysis, and support vector machines. X-ray image was augmented to make equal blocks and features were extracted using Curvelet. Finally, extracted features were fed into SVM for classification. Curvelet was based on rotational and slicing texture descriptions which give the most pertinent details for the classification of COVID-19. Results in this experiment showed that the method achieved 97.7 % of accuracy against other methods based on the chest x-ray image.","PeriodicalId":145637,"journal":{"name":"Journal of Innovative Computing and Emerging Technologies","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COVID-19 Detection using Curvelet Transformation and Support Vector Machine\",\"authors\":\"S. Sobia, Arslan Akram, Tuba Mansoor, Hirra Mustafa\",\"doi\":\"10.56536/jicet.v3i1.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the COVID-19 virus spreads over the globe, countries all over the world are going to extraordinary measures to combat the disease. To stop it from spreading, it's critical to have a high level of awareness and a well-thought-out COVID-19 recognition approach. By analyzing different methods and image-based detection using chest x-ray images, a technique was proposed in this study that includes preprocessing, texture feature analysis, and support vector machines. X-ray image was augmented to make equal blocks and features were extracted using Curvelet. Finally, extracted features were fed into SVM for classification. Curvelet was based on rotational and slicing texture descriptions which give the most pertinent details for the classification of COVID-19. Results in this experiment showed that the method achieved 97.7 % of accuracy against other methods based on the chest x-ray image.\",\"PeriodicalId\":145637,\"journal\":{\"name\":\"Journal of Innovative Computing and Emerging Technologies\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innovative Computing and Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56536/jicet.v3i1.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovative Computing and Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56536/jicet.v3i1.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着新冠肺炎疫情在全球蔓延,世界各国都在采取非常措施应对疫情。为了阻止其传播,至关重要的是要有高度的认识和深思熟虑的COVID-19识别方法。通过分析不同的方法和基于图像的胸部x线图像检测方法,本文提出了一种包括预处理、纹理特征分析和支持向量机的检测方法。对x射线图像进行增广,使其成为等块,并利用Curvelet提取特征。最后,将提取的特征输入支持向量机进行分类。Curvelet基于旋转和切片纹理描述,为COVID-19的分类提供了最相关的细节。实验结果表明,与其他基于胸部x线图像的方法相比,该方法的准确率达到97.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COVID-19 Detection using Curvelet Transformation and Support Vector Machine
As the COVID-19 virus spreads over the globe, countries all over the world are going to extraordinary measures to combat the disease. To stop it from spreading, it's critical to have a high level of awareness and a well-thought-out COVID-19 recognition approach. By analyzing different methods and image-based detection using chest x-ray images, a technique was proposed in this study that includes preprocessing, texture feature analysis, and support vector machines. X-ray image was augmented to make equal blocks and features were extracted using Curvelet. Finally, extracted features were fed into SVM for classification. Curvelet was based on rotational and slicing texture descriptions which give the most pertinent details for the classification of COVID-19. Results in this experiment showed that the method achieved 97.7 % of accuracy against other methods based on the chest x-ray image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信