一种多采样多带结构子带滤波算法

Sheng Zhang, W. Zheng
{"title":"一种多采样多带结构子带滤波算法","authors":"Sheng Zhang, W. Zheng","doi":"10.1109/ICDSP.2018.8631805","DOIUrl":null,"url":null,"abstract":"A multi-sampled multiband-structured sub-band adaptive filtering (MS-MSAF) algorithm is proposed in this paper. The key feature of the proposed algorithm lies in the expansion of the sub-sampled number to a common value. The properties of mean stability and mean-square deviation of the MS-MSAF algorithm are analyzed in the original time domain, and the theoretical analysis also leads to a way to accelerate the convergence speed of the proposed MS-MSAF algorithm. The obtained theoretical results are verified through computer simulations.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Sampled Multiband-Structured Subband Filtering Algorithm\",\"authors\":\"Sheng Zhang, W. Zheng\",\"doi\":\"10.1109/ICDSP.2018.8631805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multi-sampled multiband-structured sub-band adaptive filtering (MS-MSAF) algorithm is proposed in this paper. The key feature of the proposed algorithm lies in the expansion of the sub-sampled number to a common value. The properties of mean stability and mean-square deviation of the MS-MSAF algorithm are analyzed in the original time domain, and the theoretical analysis also leads to a way to accelerate the convergence speed of the proposed MS-MSAF algorithm. The obtained theoretical results are verified through computer simulations.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种多采样多带结构子带自适应滤波(MS-MSAF)算法。该算法的关键特征在于将子采样数扩展到一个公共值。分析了MS-MSAF算法在原始时域的平均稳定性和均方差特性,并从理论上给出了一种加快MS-MSAF算法收敛速度的方法。通过计算机仿真验证了所得理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Sampled Multiband-Structured Subband Filtering Algorithm
A multi-sampled multiband-structured sub-band adaptive filtering (MS-MSAF) algorithm is proposed in this paper. The key feature of the proposed algorithm lies in the expansion of the sub-sampled number to a common value. The properties of mean stability and mean-square deviation of the MS-MSAF algorithm are analyzed in the original time domain, and the theoretical analysis also leads to a way to accelerate the convergence speed of the proposed MS-MSAF algorithm. The obtained theoretical results are verified through computer simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信