一类等距子半群的极小生成集

L. Bugay, Melek Yağcı
{"title":"一类等距子半群的极小生成集","authors":"L. Bugay, Melek Yağcı","doi":"10.36753/mathenot.723297","DOIUrl":null,"url":null,"abstract":"Let $DP_{n}$ and $ODP_{n}$ be the semigroups of all isometries and of all order-preserving isometries on $X_{n}$, respectively. In this paper we investigate the structure of minimal generating sets of the subsemigroup $DP_{n,r}$= {α ∈ DPn : |im (α)| ≤ r} (similarly of the subsemigroup $ODP_{n,r}$ = {α ∈ ODPn : |im (α)| ≤ r}) for 2 ≤ r ≤ n − 1.  .","PeriodicalId":127589,"journal":{"name":"Mathematical Sciences and Applications E-Notes","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Minimal Generating Sets of Certain Subsemigroups of Isometries\",\"authors\":\"L. Bugay, Melek Yağcı\",\"doi\":\"10.36753/mathenot.723297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $DP_{n}$ and $ODP_{n}$ be the semigroups of all isometries and of all order-preserving isometries on $X_{n}$, respectively. In this paper we investigate the structure of minimal generating sets of the subsemigroup $DP_{n,r}$= {α ∈ DPn : |im (α)| ≤ r} (similarly of the subsemigroup $ODP_{n,r}$ = {α ∈ ODPn : |im (α)| ≤ r}) for 2 ≤ r ≤ n − 1.  .\",\"PeriodicalId\":127589,\"journal\":{\"name\":\"Mathematical Sciences and Applications E-Notes\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Sciences and Applications E-Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36753/mathenot.723297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences and Applications E-Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36753/mathenot.723297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$DP_{n}$和$ODP_{n}$分别是$X_{n}$上所有等距图和所有保序等距图的半群。本文研究了子半群$DP_{n,r}$= {α∈DPn: |im (α)|≤r}(类似于子半群$ODP_{n,r}$ = {α∈ODPn: |im (α)|≤r})对于2≤r≤n - 1的最小生成集的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Minimal Generating Sets of Certain Subsemigroups of Isometries
Let $DP_{n}$ and $ODP_{n}$ be the semigroups of all isometries and of all order-preserving isometries on $X_{n}$, respectively. In this paper we investigate the structure of minimal generating sets of the subsemigroup $DP_{n,r}$= {α ∈ DPn : |im (α)| ≤ r} (similarly of the subsemigroup $ODP_{n,r}$ = {α ∈ ODPn : |im (α)| ≤ r}) for 2 ≤ r ≤ n − 1.  .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信