{"title":"一类等距子半群的极小生成集","authors":"L. Bugay, Melek Yağcı","doi":"10.36753/mathenot.723297","DOIUrl":null,"url":null,"abstract":"Let $DP_{n}$ and $ODP_{n}$ be the semigroups of all isometries and of all order-preserving isometries on $X_{n}$, respectively. In this paper we investigate the structure of minimal generating sets of the subsemigroup $DP_{n,r}$= {α ∈ DPn : |im (α)| ≤ r} (similarly of the subsemigroup $ODP_{n,r}$ = {α ∈ ODPn : |im (α)| ≤ r}) for 2 ≤ r ≤ n − 1. .","PeriodicalId":127589,"journal":{"name":"Mathematical Sciences and Applications E-Notes","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Minimal Generating Sets of Certain Subsemigroups of Isometries\",\"authors\":\"L. Bugay, Melek Yağcı\",\"doi\":\"10.36753/mathenot.723297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $DP_{n}$ and $ODP_{n}$ be the semigroups of all isometries and of all order-preserving isometries on $X_{n}$, respectively. In this paper we investigate the structure of minimal generating sets of the subsemigroup $DP_{n,r}$= {α ∈ DPn : |im (α)| ≤ r} (similarly of the subsemigroup $ODP_{n,r}$ = {α ∈ ODPn : |im (α)| ≤ r}) for 2 ≤ r ≤ n − 1. .\",\"PeriodicalId\":127589,\"journal\":{\"name\":\"Mathematical Sciences and Applications E-Notes\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Sciences and Applications E-Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36753/mathenot.723297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences and Applications E-Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36753/mathenot.723297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Minimal Generating Sets of Certain Subsemigroups of Isometries
Let $DP_{n}$ and $ODP_{n}$ be the semigroups of all isometries and of all order-preserving isometries on $X_{n}$, respectively. In this paper we investigate the structure of minimal generating sets of the subsemigroup $DP_{n,r}$= {α ∈ DPn : |im (α)| ≤ r} (similarly of the subsemigroup $ODP_{n,r}$ = {α ∈ ODPn : |im (α)| ≤ r}) for 2 ≤ r ≤ n − 1. .