新改进的决策辅助涡轮均衡

V. Trajkovic, P. Rapajic
{"title":"新改进的决策辅助涡轮均衡","authors":"V. Trajkovic, P. Rapajic","doi":"10.1109/AUSCTW.2006.1625272","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new Turbo Equalization algorithm with Decision Aided Equalizer (DAE). The algorithm takes into account that the soft feedback decisions from the previous iteration contain errors that cannot be neglected. The proposed algorithm finds the error variance and recalculates DAE coefficients at each turbo iteration. The algorithm shows Bit Error Rate (BER) performance improvement relative to the conventional Turbo DAE for severe frequency-selective channels. The achieved improvement is 0.8 dB at BER of 10-5.","PeriodicalId":206040,"journal":{"name":"2006 Australian Communications Theory Workshop","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Improved Decision Aided Turbo Equalization\",\"authors\":\"V. Trajkovic, P. Rapajic\",\"doi\":\"10.1109/AUSCTW.2006.1625272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new Turbo Equalization algorithm with Decision Aided Equalizer (DAE). The algorithm takes into account that the soft feedback decisions from the previous iteration contain errors that cannot be neglected. The proposed algorithm finds the error variance and recalculates DAE coefficients at each turbo iteration. The algorithm shows Bit Error Rate (BER) performance improvement relative to the conventional Turbo DAE for severe frequency-selective channels. The achieved improvement is 0.8 dB at BER of 10-5.\",\"PeriodicalId\":206040,\"journal\":{\"name\":\"2006 Australian Communications Theory Workshop\",\"volume\":\"225 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Australian Communications Theory Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUSCTW.2006.1625272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Australian Communications Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUSCTW.2006.1625272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于决策辅助均衡器(DAE)的Turbo均衡算法。该算法考虑到前一次迭代的软反馈决策包含不可忽略的误差。提出的算法在每次涡轮迭代中查找误差方差并重新计算DAE系数。在严重频率选择信道中,与传统Turbo DAE相比,该算法的误码率(BER)性能有所提高。在误码率为10-5时,实现了0.8 dB的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Improved Decision Aided Turbo Equalization
In this paper we propose a new Turbo Equalization algorithm with Decision Aided Equalizer (DAE). The algorithm takes into account that the soft feedback decisions from the previous iteration contain errors that cannot be neglected. The proposed algorithm finds the error variance and recalculates DAE coefficients at each turbo iteration. The algorithm shows Bit Error Rate (BER) performance improvement relative to the conventional Turbo DAE for severe frequency-selective channels. The achieved improvement is 0.8 dB at BER of 10-5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信