基于多尺度DoG和GRNN的盲dibr合成图像质量评价

Dragana D. Sandić-Stanković, Dejan Bokan, Dragan D. Kukolj
{"title":"基于多尺度DoG和GRNN的盲dibr合成图像质量评价","authors":"Dragana D. Sandić-Stanković, Dejan Bokan, Dragan D. Kukolj","doi":"10.1109/NEUREL.2018.8587020","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the suitability of multi-resolution and multi-scale band-pass image representation generated by difference of Gaussian (DoG) operator for blind image quality assessment model. The developed model is based on general regression neural network (GRNN). The proposed model is consistent with human perception when evaluated on DIBR-synthesized image dataset.","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind DIBR-synthesized Image Quality Assessment using multi-scale DoG and GRNN\",\"authors\":\"Dragana D. Sandić-Stanković, Dejan Bokan, Dragan D. Kukolj\",\"doi\":\"10.1109/NEUREL.2018.8587020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore the suitability of multi-resolution and multi-scale band-pass image representation generated by difference of Gaussian (DoG) operator for blind image quality assessment model. The developed model is based on general regression neural network (GRNN). The proposed model is consistent with human perception when evaluated on DIBR-synthesized image dataset.\",\"PeriodicalId\":371831,\"journal\":{\"name\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2018.8587020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8587020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了由高斯差分算子生成的多分辨率、多尺度带通图像表示在盲图像质量评估模型中的适用性。该模型基于广义回归神经网络(GRNN)。在dibr合成图像数据集上对该模型进行了评价,结果与人类感知结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind DIBR-synthesized Image Quality Assessment using multi-scale DoG and GRNN
In this paper, we explore the suitability of multi-resolution and multi-scale band-pass image representation generated by difference of Gaussian (DoG) operator for blind image quality assessment model. The developed model is based on general regression neural network (GRNN). The proposed model is consistent with human perception when evaluated on DIBR-synthesized image dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信