Dragana D. Sandić-Stanković, Dejan Bokan, Dragan D. Kukolj
{"title":"基于多尺度DoG和GRNN的盲dibr合成图像质量评价","authors":"Dragana D. Sandić-Stanković, Dejan Bokan, Dragan D. Kukolj","doi":"10.1109/NEUREL.2018.8587020","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the suitability of multi-resolution and multi-scale band-pass image representation generated by difference of Gaussian (DoG) operator for blind image quality assessment model. The developed model is based on general regression neural network (GRNN). The proposed model is consistent with human perception when evaluated on DIBR-synthesized image dataset.","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind DIBR-synthesized Image Quality Assessment using multi-scale DoG and GRNN\",\"authors\":\"Dragana D. Sandić-Stanković, Dejan Bokan, Dragan D. Kukolj\",\"doi\":\"10.1109/NEUREL.2018.8587020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore the suitability of multi-resolution and multi-scale band-pass image representation generated by difference of Gaussian (DoG) operator for blind image quality assessment model. The developed model is based on general regression neural network (GRNN). The proposed model is consistent with human perception when evaluated on DIBR-synthesized image dataset.\",\"PeriodicalId\":371831,\"journal\":{\"name\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2018.8587020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8587020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blind DIBR-synthesized Image Quality Assessment using multi-scale DoG and GRNN
In this paper, we explore the suitability of multi-resolution and multi-scale band-pass image representation generated by difference of Gaussian (DoG) operator for blind image quality assessment model. The developed model is based on general regression neural network (GRNN). The proposed model is consistent with human perception when evaluated on DIBR-synthesized image dataset.