利用三次平移模拟双峰风压

François Rigo, T. Andrianne, V. Denoël
{"title":"利用三次平移模拟双峰风压","authors":"François Rigo, T. Andrianne, V. Denoël","doi":"10.2478/mmce-2019-0006","DOIUrl":null,"url":null,"abstract":"Abstract The cubic translation model is a well know tool in wind engineering, which provides a mathematical description of a non-Gaussian pressure as a cubic transformation of a Gaussian process. This simple model is widely used in practice since it offers a direct evaluation of the peak factors as a function of the statistics of the wind pressure data. This transformation is rather versatile but limited to processes which are said to be in the monotonic region. For processes falling outside this domain, this paper describes an alternative which is based on the physics of the wind flow. First, it is shown, with a classical example of a flow involving corner vortices on a flat roof, that the pressure data which does not meet the monotonic criterion is in fact associated with a bimodal distribution. Then, the proposed approach is to decompose this data into the two governing modes (slow background turbulence and fast corner vortices) and apply the usual translation model to each of them.","PeriodicalId":233081,"journal":{"name":"Mathematical Modelling in Civil Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Use of the Cubic Translation to Model Bimodal Wind Pressures\",\"authors\":\"François Rigo, T. Andrianne, V. Denoël\",\"doi\":\"10.2478/mmce-2019-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The cubic translation model is a well know tool in wind engineering, which provides a mathematical description of a non-Gaussian pressure as a cubic transformation of a Gaussian process. This simple model is widely used in practice since it offers a direct evaluation of the peak factors as a function of the statistics of the wind pressure data. This transformation is rather versatile but limited to processes which are said to be in the monotonic region. For processes falling outside this domain, this paper describes an alternative which is based on the physics of the wind flow. First, it is shown, with a classical example of a flow involving corner vortices on a flat roof, that the pressure data which does not meet the monotonic criterion is in fact associated with a bimodal distribution. Then, the proposed approach is to decompose this data into the two governing modes (slow background turbulence and fast corner vortices) and apply the usual translation model to each of them.\",\"PeriodicalId\":233081,\"journal\":{\"name\":\"Mathematical Modelling in Civil Engineering\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling in Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mmce-2019-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling in Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mmce-2019-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要三次平移模型是风力工程中一个众所周知的工具,它将非高斯压力描述为高斯过程的三次变换。这个简单的模型在实践中得到了广泛的应用,因为它提供了对峰值因子的直接评估,作为风压数据统计的函数。这种转换是相当通用的,但仅限于在单调区域的过程。对于落在这一领域之外的过程,本文描述了一种基于风流物理的替代方法。首先,通过一个涉及平顶角涡的流动的经典例子表明,不符合单调准则的压力数据实际上与双峰分布有关。然后,提出的方法是将这些数据分解为两种控制模式(慢背景湍流和快速角涡),并对每种模式应用通常的平移模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Use of the Cubic Translation to Model Bimodal Wind Pressures
Abstract The cubic translation model is a well know tool in wind engineering, which provides a mathematical description of a non-Gaussian pressure as a cubic transformation of a Gaussian process. This simple model is widely used in practice since it offers a direct evaluation of the peak factors as a function of the statistics of the wind pressure data. This transformation is rather versatile but limited to processes which are said to be in the monotonic region. For processes falling outside this domain, this paper describes an alternative which is based on the physics of the wind flow. First, it is shown, with a classical example of a flow involving corner vortices on a flat roof, that the pressure data which does not meet the monotonic criterion is in fact associated with a bimodal distribution. Then, the proposed approach is to decompose this data into the two governing modes (slow background turbulence and fast corner vortices) and apply the usual translation model to each of them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信