Franck Courbon, Philippe Loubet-Moundi, J. Fournier, A. Tria
{"title":"SEMBA:一种基于扫描电镜的快速入侵式硬件木马检测技术","authors":"Franck Courbon, Philippe Loubet-Moundi, J. Fournier, A. Tria","doi":"10.1109/ECCTD.2015.7300097","DOIUrl":null,"url":null,"abstract":"In this paper, we present how SEMBA, a fast invasive technique for white team Hardware Trojan detection, has been used to differentiate between a maliciously infected integrated circuit and a genuine one. Our methodology is based on the observation of the component's hardware structure and includes the use of wet etching, Scanning Electron Microscopy and Multiple Image Alignment. Once the Integrated Circuits' image have been fully reconstructed, image processing allows to detect the presence of the Hardware Trojan (HT). SEMBA is a fully automated approach with a 100% success rate, detecting any `transistor-size' HTs and requiring `affordable' resources and time.","PeriodicalId":148014,"journal":{"name":"2015 European Conference on Circuit Theory and Design (ECCTD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"SEMBA: A SEM based acquisition technique for fast invasive Hardware Trojan detection\",\"authors\":\"Franck Courbon, Philippe Loubet-Moundi, J. Fournier, A. Tria\",\"doi\":\"10.1109/ECCTD.2015.7300097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present how SEMBA, a fast invasive technique for white team Hardware Trojan detection, has been used to differentiate between a maliciously infected integrated circuit and a genuine one. Our methodology is based on the observation of the component's hardware structure and includes the use of wet etching, Scanning Electron Microscopy and Multiple Image Alignment. Once the Integrated Circuits' image have been fully reconstructed, image processing allows to detect the presence of the Hardware Trojan (HT). SEMBA is a fully automated approach with a 100% success rate, detecting any `transistor-size' HTs and requiring `affordable' resources and time.\",\"PeriodicalId\":148014,\"journal\":{\"name\":\"2015 European Conference on Circuit Theory and Design (ECCTD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Conference on Circuit Theory and Design (ECCTD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCTD.2015.7300097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Conference on Circuit Theory and Design (ECCTD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2015.7300097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SEMBA: A SEM based acquisition technique for fast invasive Hardware Trojan detection
In this paper, we present how SEMBA, a fast invasive technique for white team Hardware Trojan detection, has been used to differentiate between a maliciously infected integrated circuit and a genuine one. Our methodology is based on the observation of the component's hardware structure and includes the use of wet etching, Scanning Electron Microscopy and Multiple Image Alignment. Once the Integrated Circuits' image have been fully reconstructed, image processing allows to detect the presence of the Hardware Trojan (HT). SEMBA is a fully automated approach with a 100% success rate, detecting any `transistor-size' HTs and requiring `affordable' resources and time.