{"title":"基于emd的局部二值模式方法在脑电时间序列中确定情绪状态","authors":"Ömer Türk","doi":"10.36222/ejt.807971","DOIUrl":null,"url":null,"abstract":"Although determining emotional states from brain dynamics has been a subject that has been studied for a long time, the desired level has not been reached yet. In this study, Empirical mode decomposition (EMD) based Local Binary Pattern (LBP) method is proposed for emotional determination using (positive-neutral-negative) Electroencephalogram (EEG) signals. Thanks to this method, a hybrid structure was created in obtaining features from EEG signals. In the study, Seed EEG dataset containing 15 positive subjects and positive-neutral-negative emotional state is used. In the study, classification is utilized with the basis of individuals by using 27 EEG channels in the left hemisphere of each subject. Level 5 was separated by applying EMD to EEG segments containing three emotional states. Features were obtained from the Intrinsic mode function (IMF) using LBP method. These features are classified with k Nearest Neighbor (k-NN) and Artificial Neural Network (ANN). The average classification accuracy for 15 participants was 83.77% using the k-NN classifier and 84.50% with the ANN classifier. In addition, the highest classification performance was found to be 96.75% with the k-NN classifier. The results obtained in the study support similar studies in the literature.","PeriodicalId":413929,"journal":{"name":"European Journal of Technic","volume":"126 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DETERMINATION OF EMOTIONAL STATUS FROM EEG TIME SERIES BY USING EMD BASED LOCAL BINARY PATTERN METHOD\",\"authors\":\"Ömer Türk\",\"doi\":\"10.36222/ejt.807971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although determining emotional states from brain dynamics has been a subject that has been studied for a long time, the desired level has not been reached yet. In this study, Empirical mode decomposition (EMD) based Local Binary Pattern (LBP) method is proposed for emotional determination using (positive-neutral-negative) Electroencephalogram (EEG) signals. Thanks to this method, a hybrid structure was created in obtaining features from EEG signals. In the study, Seed EEG dataset containing 15 positive subjects and positive-neutral-negative emotional state is used. In the study, classification is utilized with the basis of individuals by using 27 EEG channels in the left hemisphere of each subject. Level 5 was separated by applying EMD to EEG segments containing three emotional states. Features were obtained from the Intrinsic mode function (IMF) using LBP method. These features are classified with k Nearest Neighbor (k-NN) and Artificial Neural Network (ANN). The average classification accuracy for 15 participants was 83.77% using the k-NN classifier and 84.50% with the ANN classifier. In addition, the highest classification performance was found to be 96.75% with the k-NN classifier. The results obtained in the study support similar studies in the literature.\",\"PeriodicalId\":413929,\"journal\":{\"name\":\"European Journal of Technic\",\"volume\":\"126 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Technic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36222/ejt.807971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Technic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36222/ejt.807971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DETERMINATION OF EMOTIONAL STATUS FROM EEG TIME SERIES BY USING EMD BASED LOCAL BINARY PATTERN METHOD
Although determining emotional states from brain dynamics has been a subject that has been studied for a long time, the desired level has not been reached yet. In this study, Empirical mode decomposition (EMD) based Local Binary Pattern (LBP) method is proposed for emotional determination using (positive-neutral-negative) Electroencephalogram (EEG) signals. Thanks to this method, a hybrid structure was created in obtaining features from EEG signals. In the study, Seed EEG dataset containing 15 positive subjects and positive-neutral-negative emotional state is used. In the study, classification is utilized with the basis of individuals by using 27 EEG channels in the left hemisphere of each subject. Level 5 was separated by applying EMD to EEG segments containing three emotional states. Features were obtained from the Intrinsic mode function (IMF) using LBP method. These features are classified with k Nearest Neighbor (k-NN) and Artificial Neural Network (ANN). The average classification accuracy for 15 participants was 83.77% using the k-NN classifier and 84.50% with the ANN classifier. In addition, the highest classification performance was found to be 96.75% with the k-NN classifier. The results obtained in the study support similar studies in the literature.