垂控工业直流微电网的自适应电荷状态控制

Raoul Laribi, D. Schaab, A. Sauer
{"title":"垂控工业直流微电网的自适应电荷状态控制","authors":"Raoul Laribi, D. Schaab, A. Sauer","doi":"10.1109/CPE-POWERENG48600.2020.9161557","DOIUrl":null,"url":null,"abstract":"In order to meet the challenges of upcoming decentralized energy systems, local direct current (DC) microgrids (MG) and energy storage systems (ESS) for industrial production sites have been studied. During charging and discharging processes the state of charge (SoC) of an ESS changes. Microgrid control, often based on droop curves, enables intelligent power distribution as well as voltage restoration in multi-infeed topologies and is necessary for taking care of the occurring SoC deviations. This paper compares different SoC control strategies based on droop control. An adaptive state of charge control has been developed using a proportional controller parameter (PCP) for shifting the droop curve on the current axis. In a case study the adaptive SoC control is validated for a droop-controlled industrial DC-microgrid with an ESS used for peak shaving. The performance of the adaptive SoC control is evaluated using quality criteria, e.g. peak load reduction, cut-off frequency and settling time. It is shown that the state of charge can be successfully kept within the desired range over time.","PeriodicalId":111104,"journal":{"name":"2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive State of Charge Control for DroopControlled Industrial DC-Microgrids\",\"authors\":\"Raoul Laribi, D. Schaab, A. Sauer\",\"doi\":\"10.1109/CPE-POWERENG48600.2020.9161557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to meet the challenges of upcoming decentralized energy systems, local direct current (DC) microgrids (MG) and energy storage systems (ESS) for industrial production sites have been studied. During charging and discharging processes the state of charge (SoC) of an ESS changes. Microgrid control, often based on droop curves, enables intelligent power distribution as well as voltage restoration in multi-infeed topologies and is necessary for taking care of the occurring SoC deviations. This paper compares different SoC control strategies based on droop control. An adaptive state of charge control has been developed using a proportional controller parameter (PCP) for shifting the droop curve on the current axis. In a case study the adaptive SoC control is validated for a droop-controlled industrial DC-microgrid with an ESS used for peak shaving. The performance of the adaptive SoC control is evaluated using quality criteria, e.g. peak load reduction, cut-off frequency and settling time. It is shown that the state of charge can be successfully kept within the desired range over time.\",\"PeriodicalId\":111104,\"journal\":{\"name\":\"2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPE-POWERENG48600.2020.9161557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 14th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPE-POWERENG48600.2020.9161557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了应对即将到来的分散式能源系统的挑战,对工业生产现场的局部直流微电网和储能系统进行了研究。在充电和放电过程中,ESS的充电状态(SoC)会发生变化。微电网控制通常基于下垂曲线,可以在多馈入拓扑中实现智能配电和电压恢复,并且对于处理发生的SoC偏差是必要的。本文比较了基于下垂控制的SoC控制策略。提出了一种利用比例控制器参数(PCP)移动电流轴上的下垂曲线的自适应电荷状态控制方法。在一个案例研究中,对带有用于调峰的ESS的下垂控制工业直流微电网进行了自适应SoC控制验证。使用质量标准评估自适应SoC控制的性能,例如峰值负载降低,截止频率和稳定时间。结果表明,随着时间的推移,电荷状态可以成功地保持在期望的范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive State of Charge Control for DroopControlled Industrial DC-Microgrids
In order to meet the challenges of upcoming decentralized energy systems, local direct current (DC) microgrids (MG) and energy storage systems (ESS) for industrial production sites have been studied. During charging and discharging processes the state of charge (SoC) of an ESS changes. Microgrid control, often based on droop curves, enables intelligent power distribution as well as voltage restoration in multi-infeed topologies and is necessary for taking care of the occurring SoC deviations. This paper compares different SoC control strategies based on droop control. An adaptive state of charge control has been developed using a proportional controller parameter (PCP) for shifting the droop curve on the current axis. In a case study the adaptive SoC control is validated for a droop-controlled industrial DC-microgrid with an ESS used for peak shaving. The performance of the adaptive SoC control is evaluated using quality criteria, e.g. peak load reduction, cut-off frequency and settling time. It is shown that the state of charge can be successfully kept within the desired range over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信