用于软件无线电应用的可编程Turbo解码器的GPU实现

Dhiraj Reddy Nallapa Yoge, N. Chandrachoodan
{"title":"用于软件无线电应用的可编程Turbo解码器的GPU实现","authors":"Dhiraj Reddy Nallapa Yoge, N. Chandrachoodan","doi":"10.1109/VLSID.2012.62","DOIUrl":null,"url":null,"abstract":"This paper presents the implementation of a 3GPP standards compliant configurable turbo decoder on a GPU. The challenge in implementing a turbo decoder on a GPU is in suitably parallelizing the Log-MAP decoding algorithm and doing an architecture aware mapping of it on to the GPU. The approximations in parallelizing the Log-MAP algorithm come at the cost of reduced BER performance. To mitigate this reduction, different guarding mechanisms of varying computational complexity have been presented. The limited shared memory and registers available on GPUs are carefully allocated to obtain a high real-time decoding rate without requiring several independent data streams in parallel.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"GPU Implementation of a Programmable Turbo Decoder for Software Defined Radio Applications\",\"authors\":\"Dhiraj Reddy Nallapa Yoge, N. Chandrachoodan\",\"doi\":\"10.1109/VLSID.2012.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the implementation of a 3GPP standards compliant configurable turbo decoder on a GPU. The challenge in implementing a turbo decoder on a GPU is in suitably parallelizing the Log-MAP decoding algorithm and doing an architecture aware mapping of it on to the GPU. The approximations in parallelizing the Log-MAP algorithm come at the cost of reduced BER performance. To mitigate this reduction, different guarding mechanisms of varying computational complexity have been presented. The limited shared memory and registers available on GPUs are carefully allocated to obtain a high real-time decoding rate without requiring several independent data streams in parallel.\",\"PeriodicalId\":405021,\"journal\":{\"name\":\"2012 25th International Conference on VLSI Design\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 25th International Conference on VLSI Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSID.2012.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 25th International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSID.2012.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文介绍了在GPU上实现符合3GPP标准的可配置turbo解码器。在GPU上实现turbo解码器的挑战在于适当地并行化Log-MAP解码算法,并将其映射到GPU上。并行化Log-MAP算法的近似代价是降低误码率性能。为了减轻这种减少,提出了不同计算复杂度的不同保护机制。gpu上有限的共享内存和寄存器被仔细分配,以获得高实时解码率,而不需要并行多个独立的数据流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU Implementation of a Programmable Turbo Decoder for Software Defined Radio Applications
This paper presents the implementation of a 3GPP standards compliant configurable turbo decoder on a GPU. The challenge in implementing a turbo decoder on a GPU is in suitably parallelizing the Log-MAP decoding algorithm and doing an architecture aware mapping of it on to the GPU. The approximations in parallelizing the Log-MAP algorithm come at the cost of reduced BER performance. To mitigate this reduction, different guarding mechanisms of varying computational complexity have been presented. The limited shared memory and registers available on GPUs are carefully allocated to obtain a high real-time decoding rate without requiring several independent data streams in parallel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信