高光谱数据分类机器学习中的角核

P. Honeine, C. Richard
{"title":"高光谱数据分类机器学习中的角核","authors":"P. Honeine, C. Richard","doi":"10.1109/WHISPERS.2010.5594908","DOIUrl":null,"url":null,"abstract":"Support vector machines have been investigated with success for hyperspectral data classification. In this paper, we propose a new kernel to measure spectral similarity, called the angular kernel. We provide some of its properties, such as its invariance to illumination energy, as well as connection to previous work. Furthermore, we show that the performance of a classifier associated to the angular kernel is comparable to the Gaussian kernel, in the sense of universality. We derive a class of kernels based on the angular kernel, and study the performance on an urban classification task.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"The angular kernel in machine learning for hyperspectral data classification\",\"authors\":\"P. Honeine, C. Richard\",\"doi\":\"10.1109/WHISPERS.2010.5594908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support vector machines have been investigated with success for hyperspectral data classification. In this paper, we propose a new kernel to measure spectral similarity, called the angular kernel. We provide some of its properties, such as its invariance to illumination energy, as well as connection to previous work. Furthermore, we show that the performance of a classifier associated to the angular kernel is comparable to the Gaussian kernel, in the sense of universality. We derive a class of kernels based on the angular kernel, and study the performance on an urban classification task.\",\"PeriodicalId\":193944,\"journal\":{\"name\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2010.5594908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

支持向量机在高光谱数据分类中的应用已经取得了成功。本文提出了一种新的测量光谱相似度的核函数,称为角核函数。我们提供了它的一些特性,例如它对照明能量的不变性,以及与以前工作的联系。此外,我们证明了在通用性意义上,与角核相关的分类器的性能与高斯核相当。我们在角核的基础上推导了一类核,并研究了其在城市分类任务中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The angular kernel in machine learning for hyperspectral data classification
Support vector machines have been investigated with success for hyperspectral data classification. In this paper, we propose a new kernel to measure spectral similarity, called the angular kernel. We provide some of its properties, such as its invariance to illumination energy, as well as connection to previous work. Furthermore, we show that the performance of a classifier associated to the angular kernel is comparable to the Gaussian kernel, in the sense of universality. We derive a class of kernels based on the angular kernel, and study the performance on an urban classification task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信