{"title":"基于CMT和Swin变压器的驾驶场景实例分割","authors":"Zhengyi Zha","doi":"10.1109/ICCECE58074.2023.10135453","DOIUrl":null,"url":null,"abstract":"CNN and Transformer have been used widely through computer vision problems, including object detection and instance segmentation. But usually, CNN and Transformer are utilized independently. Recently, a new method called CMT has combined the advantages of both. It applies convolution to mitigate the computation overhead. In this work, we combine the advantages of CMT and swin transformer to enrich feature extraction. And build a framework that used the new backbone to achieve instance segmentation. Finally, we have done experiments in driving scenes and achieved good results.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instance Segmentation Combined CMT and Swin Transformer in Driving Scenes\",\"authors\":\"Zhengyi Zha\",\"doi\":\"10.1109/ICCECE58074.2023.10135453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CNN and Transformer have been used widely through computer vision problems, including object detection and instance segmentation. But usually, CNN and Transformer are utilized independently. Recently, a new method called CMT has combined the advantages of both. It applies convolution to mitigate the computation overhead. In this work, we combine the advantages of CMT and swin transformer to enrich feature extraction. And build a framework that used the new backbone to achieve instance segmentation. Finally, we have done experiments in driving scenes and achieved good results.\",\"PeriodicalId\":120030,\"journal\":{\"name\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE58074.2023.10135453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Instance Segmentation Combined CMT and Swin Transformer in Driving Scenes
CNN and Transformer have been used widely through computer vision problems, including object detection and instance segmentation. But usually, CNN and Transformer are utilized independently. Recently, a new method called CMT has combined the advantages of both. It applies convolution to mitigate the computation overhead. In this work, we combine the advantages of CMT and swin transformer to enrich feature extraction. And build a framework that used the new backbone to achieve instance segmentation. Finally, we have done experiments in driving scenes and achieved good results.