{"title":"基于hmm的手写识别系统综合训练数据的生成","authors":"Tamás Varga, H. Bunke","doi":"10.1109/ICDAR.2003.1227736","DOIUrl":null,"url":null,"abstract":"A perturbation model for generating synthetic text lines from existing cursively handwritten lines of text produced by human writers is presented. Our purpose is to improve the performance of an HMM-based off-line cursive handwriting recognition system by providing it with additional synthetic training data. Two kinds of perturbations are applied, geometrical transformations and thinning/thickening operations. The proposed perturbation model is evaluated under different experimental conditions.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"342 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":"{\"title\":\"Generation of synthetic training data for an HMM-based handwriting recognition system\",\"authors\":\"Tamás Varga, H. Bunke\",\"doi\":\"10.1109/ICDAR.2003.1227736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A perturbation model for generating synthetic text lines from existing cursively handwritten lines of text produced by human writers is presented. Our purpose is to improve the performance of an HMM-based off-line cursive handwriting recognition system by providing it with additional synthetic training data. Two kinds of perturbations are applied, geometrical transformations and thinning/thickening operations. The proposed perturbation model is evaluated under different experimental conditions.\",\"PeriodicalId\":249193,\"journal\":{\"name\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"volume\":\"342 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"99\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2003.1227736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generation of synthetic training data for an HMM-based handwriting recognition system
A perturbation model for generating synthetic text lines from existing cursively handwritten lines of text produced by human writers is presented. Our purpose is to improve the performance of an HMM-based off-line cursive handwriting recognition system by providing it with additional synthetic training data. Two kinds of perturbations are applied, geometrical transformations and thinning/thickening operations. The proposed perturbation model is evaluated under different experimental conditions.