用朴素贝叶斯分类器对动词进行分类,确定生物医学文本中的因果关系和非因果关系

P. Horn, B. Bakker, G. Geleijnse, J. Korst, S. Kurkin
{"title":"用朴素贝叶斯分类器对动词进行分类,确定生物医学文本中的因果关系和非因果关系","authors":"P. Horn, B. Bakker, G. Geleijnse, J. Korst, S. Kurkin","doi":"10.3115/1572306.1572335","DOIUrl":null,"url":null,"abstract":"Since scientific journals are still the most important means of documenting biological findings, biomedical articles are the best source of information we have on protein-protein interactions. The mining of this information will provide us with specific knowledge of the presence and types of interactions, and the circumstances in which they occur.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Determining causal and non-causal relationships in biomedical text by classifying verbs using a Naive Bayesian Classifier\",\"authors\":\"P. Horn, B. Bakker, G. Geleijnse, J. Korst, S. Kurkin\",\"doi\":\"10.3115/1572306.1572335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since scientific journals are still the most important means of documenting biological findings, biomedical articles are the best source of information we have on protein-protein interactions. The mining of this information will provide us with specific knowledge of the presence and types of interactions, and the circumstances in which they occur.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1572306.1572335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1572306.1572335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于科学期刊仍然是记录生物学发现的最重要的手段,生物医学文章是我们所拥有的关于蛋白质-蛋白质相互作用的最佳信息来源。对这些信息的挖掘将为我们提供有关交互的存在和类型以及它们发生的环境的具体知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining causal and non-causal relationships in biomedical text by classifying verbs using a Naive Bayesian Classifier
Since scientific journals are still the most important means of documenting biological findings, biomedical articles are the best source of information we have on protein-protein interactions. The mining of this information will provide us with specific knowledge of the presence and types of interactions, and the circumstances in which they occur.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信