{"title":"并行分层全局照明","authors":"Q. Snell, J. Gustafson","doi":"10.1109/HPDC.1997.622358","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like \"progressive radiosity\" methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for \"ray histories.\".","PeriodicalId":243171,"journal":{"name":"Proceedings. The Sixth IEEE International Symposium on High Performance Distributed Computing (Cat. No.97TB100183)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Parallel hierarchical global illumination\",\"authors\":\"Q. Snell, J. Gustafson\",\"doi\":\"10.1109/HPDC.1997.622358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like \\\"progressive radiosity\\\" methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for \\\"ray histories.\\\".\",\"PeriodicalId\":243171,\"journal\":{\"name\":\"Proceedings. The Sixth IEEE International Symposium on High Performance Distributed Computing (Cat. No.97TB100183)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The Sixth IEEE International Symposium on High Performance Distributed Computing (Cat. No.97TB100183)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPDC.1997.622358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The Sixth IEEE International Symposium on High Performance Distributed Computing (Cat. No.97TB100183)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPDC.1997.622358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like "progressive radiosity" methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for "ray histories.".