{"title":"基于图注意网络的异构本体相似度计算","authors":"Kun Yu","doi":"10.1109/CCET55412.2022.9906374","DOIUrl":null,"url":null,"abstract":"Ontologies are crucial for data integration and information sharing. However, due to the different knowledge backgrounds of domain and ontology developers, the heterogeneity problem of multi-source ontology existence is more prominent, and ontology mapping is an important way to solve the ontology heterogeneity problem. However, the ontology similarity calculation methods among them still need to be improved in terms of accuracy or stability. In this paper, we propose an ontology similarity calculation method based on graph attention networks, which models ontologies as heterogeneous graph networks and uses the graph attention network model to introduce an attention mechanism to dynamically consider the influence of edge weights to achieve neighbor aggregation and perform similarity calculation. The experimental results show that this method has higher accuracy than the existing ontology similarity calculation methods.","PeriodicalId":329327,"journal":{"name":"2022 IEEE 5th International Conference on Computer and Communication Engineering Technology (CCET)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarity Computation of Heterogeneous Ontology Based on Graph Attention Network\",\"authors\":\"Kun Yu\",\"doi\":\"10.1109/CCET55412.2022.9906374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ontologies are crucial for data integration and information sharing. However, due to the different knowledge backgrounds of domain and ontology developers, the heterogeneity problem of multi-source ontology existence is more prominent, and ontology mapping is an important way to solve the ontology heterogeneity problem. However, the ontology similarity calculation methods among them still need to be improved in terms of accuracy or stability. In this paper, we propose an ontology similarity calculation method based on graph attention networks, which models ontologies as heterogeneous graph networks and uses the graph attention network model to introduce an attention mechanism to dynamically consider the influence of edge weights to achieve neighbor aggregation and perform similarity calculation. The experimental results show that this method has higher accuracy than the existing ontology similarity calculation methods.\",\"PeriodicalId\":329327,\"journal\":{\"name\":\"2022 IEEE 5th International Conference on Computer and Communication Engineering Technology (CCET)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 5th International Conference on Computer and Communication Engineering Technology (CCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCET55412.2022.9906374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Computer and Communication Engineering Technology (CCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCET55412.2022.9906374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Similarity Computation of Heterogeneous Ontology Based on Graph Attention Network
Ontologies are crucial for data integration and information sharing. However, due to the different knowledge backgrounds of domain and ontology developers, the heterogeneity problem of multi-source ontology existence is more prominent, and ontology mapping is an important way to solve the ontology heterogeneity problem. However, the ontology similarity calculation methods among them still need to be improved in terms of accuracy or stability. In this paper, we propose an ontology similarity calculation method based on graph attention networks, which models ontologies as heterogeneous graph networks and uses the graph attention network model to introduce an attention mechanism to dynamically consider the influence of edge weights to achieve neighbor aggregation and perform similarity calculation. The experimental results show that this method has higher accuracy than the existing ontology similarity calculation methods.