桁架结构布置、形状及控制系统同步优化设计

Shinsuke Sakamoto, T. Shimomura, H. Okubo
{"title":"桁架结构布置、形状及控制系统同步优化设计","authors":"Shinsuke Sakamoto, T. Shimomura, H. Okubo","doi":"10.2322/JJSASS.57.267","DOIUrl":null,"url":null,"abstract":"This paper addresses simultaneous optimal design of adaptive truss structures, in which we compromise structural and control systems while taking into account structural layout, shape and control systems. The problem becomes nonconvex discrete optimization problem in terms of continuous and discrete design variables. Noticing that the nonconvex problem can be approximated by a convex one by adding a semidefinite positive function, so-called a convexifying function, to make the constraint convex, first, we solve this nonconvex problem using successive LMI optimization in cross-sectional area of truss members and state feedback gains. Second, we solve this discrete problem using genetic algorithm for simultaneous optimization of layout of truss structures. In this way, a hybrid method combining successive LMI optimization and genetic algorithm is used in this study. A numerical example of a simple structure is provided to demonstrate the effectiveness of the proposed method.","PeriodicalId":144591,"journal":{"name":"Journal of The Japan Society for Aeronautical and Space Sciences","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Optimal Design of Structural Layout, Shape and Control Systems for Truss Structure\",\"authors\":\"Shinsuke Sakamoto, T. Shimomura, H. Okubo\",\"doi\":\"10.2322/JJSASS.57.267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses simultaneous optimal design of adaptive truss structures, in which we compromise structural and control systems while taking into account structural layout, shape and control systems. The problem becomes nonconvex discrete optimization problem in terms of continuous and discrete design variables. Noticing that the nonconvex problem can be approximated by a convex one by adding a semidefinite positive function, so-called a convexifying function, to make the constraint convex, first, we solve this nonconvex problem using successive LMI optimization in cross-sectional area of truss members and state feedback gains. Second, we solve this discrete problem using genetic algorithm for simultaneous optimization of layout of truss structures. In this way, a hybrid method combining successive LMI optimization and genetic algorithm is used in this study. A numerical example of a simple structure is provided to demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":144591,\"journal\":{\"name\":\"Journal of The Japan Society for Aeronautical and Space Sciences\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Japan Society for Aeronautical and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2322/JJSASS.57.267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Japan Society for Aeronautical and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/JJSASS.57.267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了自适应桁架结构的同步优化设计,在考虑结构布局、形状和控制系统的同时,我们折衷了结构和控制系统。该问题变成了包含连续和离散设计变量的非凸离散优化问题。注意到非凸问题可以通过添加一个半定正函数(即凸化函数)使约束凸出而近似为一个凸问题,因此,首先采用基于桁架构件横截面积和状态反馈增益的连续LMI优化方法求解该非凸问题。其次,采用遗传算法求解该离散问题,实现桁架结构布置的同步优化。因此,本研究采用逐次LMI优化与遗传算法相结合的混合方法。通过一个简单结构的数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous Optimal Design of Structural Layout, Shape and Control Systems for Truss Structure
This paper addresses simultaneous optimal design of adaptive truss structures, in which we compromise structural and control systems while taking into account structural layout, shape and control systems. The problem becomes nonconvex discrete optimization problem in terms of continuous and discrete design variables. Noticing that the nonconvex problem can be approximated by a convex one by adding a semidefinite positive function, so-called a convexifying function, to make the constraint convex, first, we solve this nonconvex problem using successive LMI optimization in cross-sectional area of truss members and state feedback gains. Second, we solve this discrete problem using genetic algorithm for simultaneous optimization of layout of truss structures. In this way, a hybrid method combining successive LMI optimization and genetic algorithm is used in this study. A numerical example of a simple structure is provided to demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信