针基微流体系统高通量制备微液滴的研究

Zheng Lian, Y. Ren, K. Koh, Jun He, G. Chen, Xiaogang Yang
{"title":"针基微流体系统高通量制备微液滴的研究","authors":"Zheng Lian, Y. Ren, K. Koh, Jun He, G. Chen, Xiaogang Yang","doi":"10.1115/mnhmt2019-4263","DOIUrl":null,"url":null,"abstract":"Needle-based microfluidic system that comprised of needle-based microfluidic devices (NBMD) in parallel connection was employed to generate polydimethylsiloxane (PDMS) microdroplets using oil-in-water (O/W) single emulsion template. The parallel-connection could be simply realized by multiple single NBMD connected via flow diverting devices. The versatile flow diverting devices could not only avoid the additional use of injection pumps for introducing fluids into the microfluidic system, but also enhance the yields of microdroplets. The entire production rate of the system has been raised to 535 drops per minute compared with that using a single NBMD which yields to 133 drops per minute. All the microdroplets were produced under dripping flow regime. If identical flow conditions and channel diameters were applied, the generated microdroplets from the each microchannel could have high monodispersity. Despite of several parameters that could affect the droplet sizes, for example, flow rate exerted on each channel and the channel size which depended on the selection of various needle combinations of the inlet and outlet needles, the inter-needle distance between those two needles may significantly influence the size of droplets. Thus, it shall be controlled carefully to remain the same distance in terms of achieving high monodispersity of the droplet sizes. On the other hand, one can vary the sizes of needles applied in the same batch of production or by adjusting the inter-needle distance in order to realize the production of microdroplets with various sizes. Moreover, diverse types of microdroplets could be produced simultaneously through different channels by NBMD. In this research, sugar and multi-walled carbon nanotubes (CNTs) were utilized as dopants mixing with PDMS precursor as the dispersed phase to produce PDMS-S and PDMS-CNTs microdroplets. The droplets could be collected and thermally solidified off-site for other applications. This platform does not require sophisticated equipment and is very cost-effective compared with conventional microfluidic devices such as PDMS devices or glass capillary devices. Hence, the system has great potential to produce microdroplets at a large scale.","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High Throughput Fabrication of Microdroplets Using Needle Based Microfluidic System\",\"authors\":\"Zheng Lian, Y. Ren, K. Koh, Jun He, G. Chen, Xiaogang Yang\",\"doi\":\"10.1115/mnhmt2019-4263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Needle-based microfluidic system that comprised of needle-based microfluidic devices (NBMD) in parallel connection was employed to generate polydimethylsiloxane (PDMS) microdroplets using oil-in-water (O/W) single emulsion template. The parallel-connection could be simply realized by multiple single NBMD connected via flow diverting devices. The versatile flow diverting devices could not only avoid the additional use of injection pumps for introducing fluids into the microfluidic system, but also enhance the yields of microdroplets. The entire production rate of the system has been raised to 535 drops per minute compared with that using a single NBMD which yields to 133 drops per minute. All the microdroplets were produced under dripping flow regime. If identical flow conditions and channel diameters were applied, the generated microdroplets from the each microchannel could have high monodispersity. Despite of several parameters that could affect the droplet sizes, for example, flow rate exerted on each channel and the channel size which depended on the selection of various needle combinations of the inlet and outlet needles, the inter-needle distance between those two needles may significantly influence the size of droplets. Thus, it shall be controlled carefully to remain the same distance in terms of achieving high monodispersity of the droplet sizes. On the other hand, one can vary the sizes of needles applied in the same batch of production or by adjusting the inter-needle distance in order to realize the production of microdroplets with various sizes. Moreover, diverse types of microdroplets could be produced simultaneously through different channels by NBMD. In this research, sugar and multi-walled carbon nanotubes (CNTs) were utilized as dopants mixing with PDMS precursor as the dispersed phase to produce PDMS-S and PDMS-CNTs microdroplets. The droplets could be collected and thermally solidified off-site for other applications. This platform does not require sophisticated equipment and is very cost-effective compared with conventional microfluidic devices such as PDMS devices or glass capillary devices. Hence, the system has great potential to produce microdroplets at a large scale.\",\"PeriodicalId\":331854,\"journal\":{\"name\":\"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/mnhmt2019-4263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-4263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用针基微流控装置(NBMD)并联组成的针基微流控系统,利用单乳液模板制备聚二甲基硅氧烷(PDMS)微滴。通过分流装置连接多个单NBMD可以简单地实现并联。多用途的分流装置不仅可以避免额外使用注入泵将流体引入微流体系统,而且可以提高微液滴的产率。与使用单个NBMD的每分钟133滴相比,该系统的整个生产速度已提高到每分钟535滴。所有的微滴都是在滴流状态下产生的。在相同的流动条件和通道直径下,每个微通道生成的微滴具有较高的单分散性。尽管影响液滴大小的参数有很多,例如,施加在每个通道上的流量,以及取决于进口和出口针的各种针组合选择的通道大小,但两针之间的针间距离可能会显著影响液滴的大小。因此,在实现液滴尺寸的高单分散性方面,必须仔细控制以保持相同的距离。另一方面,可以改变同一批次生产中使用的针的大小或通过调整针间距离,以实现不同大小的微滴的生产。此外,NBMD可以通过不同的通道同时产生不同类型的微滴。本研究采用糖和多壁碳纳米管(CNTs)作为掺杂剂,与PDMS前驱体作为分散相混合制备PDMS- s和PDMS-CNTs微滴。这些液滴可以被收集起来,并在现场外进行热固化,用于其他应用。该平台不需要复杂的设备,与传统的微流体设备(如PDMS设备或玻璃毛细管设备)相比,成本效益非常高。因此,该系统具有大规模生产微液滴的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Throughput Fabrication of Microdroplets Using Needle Based Microfluidic System
Needle-based microfluidic system that comprised of needle-based microfluidic devices (NBMD) in parallel connection was employed to generate polydimethylsiloxane (PDMS) microdroplets using oil-in-water (O/W) single emulsion template. The parallel-connection could be simply realized by multiple single NBMD connected via flow diverting devices. The versatile flow diverting devices could not only avoid the additional use of injection pumps for introducing fluids into the microfluidic system, but also enhance the yields of microdroplets. The entire production rate of the system has been raised to 535 drops per minute compared with that using a single NBMD which yields to 133 drops per minute. All the microdroplets were produced under dripping flow regime. If identical flow conditions and channel diameters were applied, the generated microdroplets from the each microchannel could have high monodispersity. Despite of several parameters that could affect the droplet sizes, for example, flow rate exerted on each channel and the channel size which depended on the selection of various needle combinations of the inlet and outlet needles, the inter-needle distance between those two needles may significantly influence the size of droplets. Thus, it shall be controlled carefully to remain the same distance in terms of achieving high monodispersity of the droplet sizes. On the other hand, one can vary the sizes of needles applied in the same batch of production or by adjusting the inter-needle distance in order to realize the production of microdroplets with various sizes. Moreover, diverse types of microdroplets could be produced simultaneously through different channels by NBMD. In this research, sugar and multi-walled carbon nanotubes (CNTs) were utilized as dopants mixing with PDMS precursor as the dispersed phase to produce PDMS-S and PDMS-CNTs microdroplets. The droplets could be collected and thermally solidified off-site for other applications. This platform does not require sophisticated equipment and is very cost-effective compared with conventional microfluidic devices such as PDMS devices or glass capillary devices. Hence, the system has great potential to produce microdroplets at a large scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信