Bernd Dudzik, J. Broekens, Mark Antonius Neerincx, H. Hung
{"title":"探索个人记忆和视频内容作为视频诱发情绪预测中面部行为的背景","authors":"Bernd Dudzik, J. Broekens, Mark Antonius Neerincx, H. Hung","doi":"10.1145/3382507.3418814","DOIUrl":null,"url":null,"abstract":"Empirical evidence suggests that the emotional meaning of facial behavior in isolation is often ambiguous in real-world conditions. While humans complement interpretations of others' faces with additional reasoning about context, automated approaches rarely display such context-sensitivity. Empirical findings indicate that the personal memories triggered by videos are crucial for predicting viewers' emotional response to such videos ?- in some cases, even more so than the video's audiovisual content. In this article, we explore the benefits of personal memories as context for facial behavior analysis. We conduct a series of multimodal machine learning experiments combining the automatic analysis of video-viewers' faces with that of two types of context information for affective predictions: \\beginenumerate* [label=(\\arabic*)] \\item self-reported free-text descriptions of triggered memories and \\item a video's audiovisual content \\endenumerate*. Our results demonstrate that both sources of context provide models with information about variation in viewers' affective responses that complement facial analysis and each other.","PeriodicalId":402394,"journal":{"name":"Proceedings of the 2020 International Conference on Multimodal Interaction","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Exploring Personal Memories and Video Content as Context for Facial Behavior in Predictions of Video-Induced Emotions\",\"authors\":\"Bernd Dudzik, J. Broekens, Mark Antonius Neerincx, H. Hung\",\"doi\":\"10.1145/3382507.3418814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Empirical evidence suggests that the emotional meaning of facial behavior in isolation is often ambiguous in real-world conditions. While humans complement interpretations of others' faces with additional reasoning about context, automated approaches rarely display such context-sensitivity. Empirical findings indicate that the personal memories triggered by videos are crucial for predicting viewers' emotional response to such videos ?- in some cases, even more so than the video's audiovisual content. In this article, we explore the benefits of personal memories as context for facial behavior analysis. We conduct a series of multimodal machine learning experiments combining the automatic analysis of video-viewers' faces with that of two types of context information for affective predictions: \\\\beginenumerate* [label=(\\\\arabic*)] \\\\item self-reported free-text descriptions of triggered memories and \\\\item a video's audiovisual content \\\\endenumerate*. Our results demonstrate that both sources of context provide models with information about variation in viewers' affective responses that complement facial analysis and each other.\",\"PeriodicalId\":402394,\"journal\":{\"name\":\"Proceedings of the 2020 International Conference on Multimodal Interaction\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3382507.3418814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382507.3418814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring Personal Memories and Video Content as Context for Facial Behavior in Predictions of Video-Induced Emotions
Empirical evidence suggests that the emotional meaning of facial behavior in isolation is often ambiguous in real-world conditions. While humans complement interpretations of others' faces with additional reasoning about context, automated approaches rarely display such context-sensitivity. Empirical findings indicate that the personal memories triggered by videos are crucial for predicting viewers' emotional response to such videos ?- in some cases, even more so than the video's audiovisual content. In this article, we explore the benefits of personal memories as context for facial behavior analysis. We conduct a series of multimodal machine learning experiments combining the automatic analysis of video-viewers' faces with that of two types of context information for affective predictions: \beginenumerate* [label=(\arabic*)] \item self-reported free-text descriptions of triggered memories and \item a video's audiovisual content \endenumerate*. Our results demonstrate that both sources of context provide models with information about variation in viewers' affective responses that complement facial analysis and each other.